Skip to main content
Log in

Effect of roll-bonding temperature on the strength and electrical conductivity of an α-brass-clad Cu–1Cr alloy composite

  • Strength and Plasticity
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Tri-layered α-brass-clad Cu–Cr-alloy composite plates were prepared by hot roll-bonding. Neither intermetallic-compound layers nor interface defects were observed at the interfaces in the as-rolled and heat-treated α-brass-clad Cu–Cr composite plates. The hardness of the as-rolled α-brass layer was greater than that of the Cu–Cr substrate, since the α-brass was strengthened by strain hardening more efficiently upon rolling. The hardness of the α-brass decreased appreciably upon annealing because of the recovery processes, whereas that of the Cu–Cr layer slightly increased after heat treatment at 450°C due to the precipitation strengthening. After the post-roll-bonding heat treatment at 450°C, the strength of the α-brass-clad Cu–Cr-alloy composite decreased with a significant increase in ductility. The electrical conductivity of the asroll-bonded α-brass clad Cu–Cr alloy composite (47–52% IACS) increased significantly (to 72–74% IACS) after the 1-h heat treatment. The strength and conductivity of the clad composite are dependent on the precipitation strengthening of Cu–Cr and recovery softening of α-brass in the course of the post-roll-bonding heat treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I.-K Kim and S. I. Hong, “Effect of heat treatment on the bending behavior of tri-layered Cu/Al/Cu composite plates,” Mater. Des. 47, 590–598 (2013).

    Article  Google Scholar 

  2. I.-K. Kim and S. I. Hong, “Roll-bonded tri-layered Mg/Al/ stainless steel clad composites and their deformation and fracture behavior,” Metall. Mater. Trans. A 44, 3890–3900 (2013).

    Article  Google Scholar 

  3. I.-K. Kim and S. I. Hong, “Effect of component layer thickness on the bending behaviors of roll-bonded trilayered Mg/Al/STS clad composites,” Mater. Des. 49, 935–944 (2013).

    Article  Google Scholar 

  4. N. V. Govindaraj, J. G. Frydendahl, and B. Holmedal, “Layer continuity in accumulative roll bonding of dissimilar material combinations,” Mater. Des. 52, 905–915 (2013).

    Article  Google Scholar 

  5. J. Y. Jin and S. I. Hong, “Effect of heat treatment on tensile deformation characteristics and properties of Al3003/STS439 clad composite,” Mater. Sci. Eng., A 596, 1–8 (2014).

    Article  Google Scholar 

  6. D. V. Lazurenko, V. I. Mali, I. A. Bataev, A. Thoemmes, A. A. Bataev, A. I. Popelukh, A. G. Anisimov, and N. S. Belousova, “Metal-intermetallic laminate Ti–Al3Ti composites produced by spark plasma sintering of titanium and aluminum foils enclosed in titanium shells,” Metall. Mater. Trans. A 46, 4326–4334 (2015).

    Article  Google Scholar 

  7. A. Y. Volkov, B. A. Greenberg, M. A. Ivanov, O. A. Elkina, A. V. Inozemtsev, A. V. Plotnikov, A. M. Patselov, and V. E. Kozhevnikov, “Electronmicroscopic examination of the transition zone of aluminum–tantalum bimetallic joints (Explosion welding),” Phys. Met. Metallogr. 115, 380–391 (2014).

    Article  Google Scholar 

  8. V. V. Sagaradze, N. V. Kataeva, S. Yu. Mushnikova, O. A. Khar’kov, G. Yu. Kalinin, and V. D. Yampol’skii, “Structural transformations in hull material clad by nitrogen stainless steel using various methods,” Phys. Met. Metallogr. 115, 202–210 (2014).

    Article  Google Scholar 

  9. I.-K. Kim and S. I. Hong, “Mechanochemical joining in cold roll-cladding of tri-layered Cu/Al/Cu composite and the interface cracking behavior,” Mater. Des. 57, 625–631 (2014).

    Article  Google Scholar 

  10. J. S. Ha and S. I. Hong, “Design of high strength Cu alloy interlayer for mechanical bonding Ti to steel and characterization of their tri-layered clad,” Mater. Des. 51, 293–299 (2013).

    Article  Google Scholar 

  11. E.-W. Jeong, K. N. Hui, and D.-H. Bae, “Identification of the intermetallic compound layer formed at the interface of roll-bonded aluminum-clad steel by thermal annealing,” Met. Mater. Int. 20, 499–502 (2014).

    Article  Google Scholar 

  12. S. H. Kim, J. H. Kang, K. J. Euh, and H. W. Kim, “Grain-structure evolution of brazing-treated A4343/A3003/A4343 aluminum brazing sheets rolled with different reductions,” Met. Mater. Int. 21, 276–285 (2015).

    Article  Google Scholar 

  13. S. E. Lee, K. S. Lee, M. J. Kim, and Y. N. Kwon, “Effect of thermal treatment on the interface-correlated mechanical properties of Al–Mg dissimilar metallic sheets,” Korean J. Met. Mater. 52, 605–613 (2014).

    Article  Google Scholar 

  14. R. K. Islamgaliev, K. M. Nesterov, and R. Z. Valiev, “Structure, strength, and electric conductivity of a Cu–Cr copper-based alloy subjected to severe plastic deformation,” Phys. Met. Metallogr. 116, 209–218 (2015).

    Article  Google Scholar 

  15. J. B. Correia, H. A. Davies, and C. M. Sellars, “Strengthening in rapidly solidified age hardened Cu–Cr and Cu–Cr–Zr alloys,” Acta Mater. 45, 177–190 (1997).

    Article  Google Scholar 

  16. M. J. Saarivirta, “High conductivity copper-rich Cu–Zr alloys,” Trans. Metall. Soc. AIME 218, 431–437 (1960).

    Google Scholar 

  17. W. N. Kim and S. I. Hong, Mater. Sci. Eng., A 651, 976–986 (2016) http://dx.doi.org/ doi 10.1016/j.msea.2015.11.062

    Article  Google Scholar 

  18. D. B. Butrymowicz, J. R. Manning, and M. E. Read, “Diffusion in copper and copper alloys,” J. Phys. Chem. Ref. Data 4, 177–249 (1975).

    Article  Google Scholar 

  19. Z. Moser and L. A. Heldt, “The Cr–Zn (Chromium–Zinc) system,” J. Phase. Equilibr. 13, 172–176 (1992).

    Article  Google Scholar 

  20. V. I. Zel’dovich, I. V. Khomskaya, N. Yu. Frolova, A. E. Kheifets, E. V. Shorokhov, and P. A. Nasonov, “Structure of chromium–zirconium bronze subjected to dynamic channel-angular pressing and aging,” Phys. Met. Metallogr. 114, 411–418 (2013).

    Article  Google Scholar 

  21. I. S. Batra, G. K. Dey, U. D. Kulkarni, and S. Banerjee, “Precipitation in a Cu–Cr–Zr alloy,” Mater. Sci. Eng., A 356, 32–36 (2002).

    Article  Google Scholar 

  22. M. J. Starink and X. M. Li, “A model for the electrical conductivity of peak aged and overaged Al–Zn–Mg–Cu alloys,” Metall. Mater. Trans. A 34, 899–911 (2003).

    Article  Google Scholar 

  23. A. O. Olofinjanaa and K. S. Tan, “Achieving combined high strength and high conductivity in re-processed Cu–Cr alloy,” J. Achiev. Mater. Manufac. Eng. 35, 14–20 (2009).

    Google Scholar 

  24. S. I. Hong and M. A. Hill, “Microstructural stability and mechanical response of Cu–Ag microcomposite wires,” Acta Mater. 46, 4111–4122 (1998).

    Article  Google Scholar 

  25. S. I. Hong and M. A. Hill, “Mechanical stability and electrical conductivity of Cu–Ag filamentary microcomposites,” Mater. Sci. Eng., A 264, 151–158 (1999).

    Article  Google Scholar 

  26. J. D. Verhoeven, H. L. Downing, L. S. Chumbley, and E. D. Gibson, “The resistivity and microstructure of heavily drawn Cu–Nb alloys,” J. Appl. Phys. 65, 1293–1301 (1989).

    Article  Google Scholar 

  27. J. S. Ha and S. I. Hong, “Deformation and fracture of Ti/439 stainless steel clad composite at intermediate temperatures, Mater. Sci. Eng, A 651, 805–809 (2016) http://dx.doi.org/10.1016/j.msea.2015.11.041

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Hong.

Additional information

Published in Russian in Fizika Metallov i Metallovedenie, 2017, Vol. 118, No. 2, pp. 200–208.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, G.T., Song, J.S. & Hong, S.I. Effect of roll-bonding temperature on the strength and electrical conductivity of an α-brass-clad Cu–1Cr alloy composite. Phys. Metals Metallogr. 118, 190–197 (2017). https://doi.org/10.1134/S0031918X17020041

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X17020041

Keywords

Navigation