Skip to main content
Log in

Structural and phase transformations and micromechanical properties of the high-nitrogen austenitic steel deformed by shear under pressure

  • Structure, Phase Transformations, and Diffusion
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Using transmission electron microscopy, X-ray diffraction analysis, Mössbauer spectroscopy, microdurometry, and microindentation, the effect of large plastic deformations (through shear under pressure in Bridgman anvils) on the structure, phase composition, and micromechanical properties of high-nitrogen (1.24 wt % N) 08Kh22GA1.24 steel has been investigated. The steel was obtained by the casting method with counterpressure of nitrogen and was subjected to different heat treatments (quenching from1180°С, aging at 450 and 550°С) that form an austenitic (FCC) structure of the metallic matrix with chromium nitrides. It has been established that deformation by shear under pressure at room temperature results in the dispersion and deformation-induced partial dissolution of primary nitrides Cr2N in quenched and aged steel and in the complete (after aging at 450°С) and partial (after aging at 550°С) dissolution of secondary nitrides CrN. It has been noted that, for aged steel that contains finely dispersed secondary chromium nitrides upon shear deformation, as compared to the quenched state, the dispersion of the austenitic structure (down to nano- and submicrocrystalline states) is more intense and the enhancement in the microhardness and resistance to elastic–plastic deformations upon contact loading is more effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ts. Rashev, High-Nitrogen Steels. Metallurgy under Pressure (Bulgar. Acad. Sci., Sofia, 1995).

    Google Scholar 

  2. V. G. Gavriljuk and H. Berns, High Nitrogen Steels: Structure, Properties, Manufacture, Applications (Springer, Berlin, 1999).

    Book  Google Scholar 

  3. H. Hanninen, J. Romu, R. Ilola, J. Tervo, and A. Laitinen, “Effects of processing and manufacturing of high nitrogen-containing stainless steels on their mechanical, corrosion and wear properties,” J. Mater. Proces. Technol. 117, 424–430 (2001).

    Article  Google Scholar 

  4. O. A. Bannykh, “Economical stainless nitrogen steels: Promising substitutes for light alloys,” Metal. Sci. Heat Treat. 47, 261–265 (2005).

    Article  Google Scholar 

  5. Ts. Rashev, “High nitrogen steels and metallurgy under pressure,” Trans. Indian Inst. Metals 55, 201–211 (2002).

    Google Scholar 

  6. L. Zhekova and Ts. Rashev, “Feasibility study on developing high-nitrogen steels by refining in suspended state under high pressure,” Metallurgist 51, 90–96 (2007).

    Article  Google Scholar 

  7. L. G. Korshunov, Yu. N. Goikhenberg, N. A. Tereshchenko, A. I. Uvarov, A. V. Makarov, and N. L. Chernenko, “Wear resistance and surface structure of nitrogen-containing stainless austenitic steels upon friction and abrasive wear,” Phys. Met. Metallogr. 84, 554–561 (1997).

    Google Scholar 

  8. O. A. Bannykh, V. M. Blinov, M. V. Kostina, M. A. Filippov, M. S. Khadyev, Yu. R. Nemirovskii, and T. A. Belozerova, “On the interconnection of wear resistance with the phase composition and mechanical properties of new high-nitrogen iron-chromium alloys,” Metally, No. 2, 57–64 (2000).

    Google Scholar 

  9. A. V. Makarov, L. G. Korshunov, V. M. Schastlivtsev, N. L. Chernenko, and Yu. I. Filippov, “Structure and tribological and mechanical properties of high-chromium nitrogen-containing martensite-based steels,” Phys. Met. Metallogr. 96, 339–350 (2003).

    Google Scholar 

  10. J. C. Rawers, “Wear testing of high Fe–N–C Steels,” Wear 258, 32–39 (2005).

    Article  Google Scholar 

  11. V. V. Berezovskaya, R. A. Savrai, E. A. Merkushkin, and A. V. Makarov, “Structure and mechanical and corrosion properties of new high-nitrogen CrMn steels containing molybdenum,” Russ. Metall. (Metally) 2012, 380–388 (2012).

    Article  Google Scholar 

  12. E. S. Gorkunov, E. A. Putilova, S. M. Zadvorkin, A. V. Makarov, N. L. Pecherkina, G. Yu. Kalinin, S. Yu. Mushnikova, and O. V. Fomina, “Behavior of magnetic characteristics in promising nitrogen-containing steels upon elastoplastic deformation,” Phys. Met. Metallogr. 116, 838–849 (2015).

    Article  Google Scholar 

  13. L. M. Kaputkina, V. G. Prokoshkina, and N. N. Krysina, “Structure and strain-induced martensitic transformations of carbon-containing and nitrogen-containing iron-based alloys,” Russ. Metall. (Metally) 2001, 628–632 (2001).

    Google Scholar 

  14. M. V. Kostina, A. V. Dymov, V. M. Blinov, and O. A. Bannykh, “Effect of plastic deformation on the structure and properties of Fe–Cr system,” Metal. Sci. Heat Treat. 44, 9–14 (2002).

    Article  Google Scholar 

  15. V. A. Shabashov, S. V. Borisov, A. V. Litvinov, A. E. Zamatovskii, N. F. Vil’danova, V. I. Voronin, and O. P. Shepatkovskii, “Nanostructure formation and phase transformations in nitrided stainless steel Kh18N8 during severe cold deformation,” Phys. Met. Metallogr. 107, 601–612 (2009).

    Article  Google Scholar 

  16. V. A. Shabashov, S. V. Borisov, A. V. Litvinov, V. V. Sagaradze, A. E. Zamatovskii, K. A. Lyashkov, and N. F. Vil’danova, “Deformation-induced cyclic phase transitions on dissolution–precipitation of nitrides in surface layers of Fe–Cr–(Ni)–N alloys,” Phys. Met. Metallogr. 113, 489–503 (2012).

    Article  Google Scholar 

  17. G. A. Dorofeev, I. V. Sapegina, V. I. Lad’yanov, B. E. Pushkarev, E. A. Pechina, and D. V. Prokhorov, “Mechanical alloying and severe plastic deformation of nanocrystalline high-nitrogen stainless steels,” Phys. Met. Metallogr. 113, 963–973 (2012).

    Article  Google Scholar 

  18. V. A. Shabashov, K. A. Kozlov, K. A. Lyashkov, N. V.Kataeva, A. V. Litvinov, V. V. Sagaradze, and A. E. Zamatovskii, “Solid-state mechanical synthesis of austenitic Fe–Ni–Cr–N alloys,” Phys. Met. Metallogr. 115, 392–402 (2014).

    Article  Google Scholar 

  19. V. A. Shabashov, S. V. Borisov, A. V. Litvinov, N. V. Kataeva, S. V. Afanas’ev, and S. G. Titova, “Producing a gradient-composition nanocrystalline structure on nitrided surfaces of invar-type Fe–Ni alloys using megaplastic deformation,” Phys. Met. Metallogr. 115, 871–883 (2014).

    Article  Google Scholar 

  20. E. S. Gorkunov, A. V. Makarov, S. M. Zadvorkin, A. L. Osintseva, S. Yu. Mitropol’skaya, S. V. Burov, R. A. Savrai, S. A. Rogovaya, Ts. Rashev, and L. Zhekova, “Electromagnetic control of composition, hardness, and wear-resistance of high-nitrogen stainless steels,” Defektoskopiya, No. 12, 19–30 (2012).

    Google Scholar 

  21. V. A. Teplov, V. P. Pilyugin, R. I. Kuznetsov, D. I. Tupitsa, V. A. Shabashov, and V. M. Gundyrev, “The bcc–fcc transition induced by deformation under pressure of an iron–nickel alloy,” Phys. Met. Metallogr. 64, 83–89 (1987).

    Google Scholar 

  22. V. S. Rusakov, Mössbauer Spectroscopy of Locally Inhomogeneous Systems (Almaty, 2000) [in Russian].

    Google Scholar 

  23. R. S. Reno and L. J. Swartzendruber, “Origin of Mössbauer linewidth in stainless steel,” in Proc. 18th Annu. Conf. Magn. Magn. Mater., Denver. Colo., 1972, Part 2 (New York, 1973), p. 1350.

    Google Scholar 

  24. V. A. Shabashov, L. G. Korshunov, V. V. Sagaradze, N. V. Kataeva, A. E. Zamatovskii, A. V. Litvinov, and K. A. Lyashkov, “Nitrogen distribution in austenitic high-nitrogen chromium-manganese steel under friction and high-pressure torsion,” Phys. Met. Metallogr. 114, 681–691 (2013).

    Article  Google Scholar 

  25. B. P. Srivastava, H. N. K. Sarma, and D. L. Bhattacharya, “Ouadrupoles splitting in deformed stainless steel,” Phys. Stat. Sol, A 10, K117–K118 (1972).

    Article  Google Scholar 

  26. K. Oda, K. Umezu, and H. Ino, “Interaction and arrangement of nitrogen atoms in fcc iron,” J. Phys.: Condens. Matter 2, 10147–10158 (1990).

    Google Scholar 

  27. R. M. Banov and G. Z. Zlateva, “Effect of nitrogen on concentration of stacking faults in Cr–Mn austenite,” Izv. Akad. Nauk SSSR, Met., No. 2, 172–176 (1977).

    Google Scholar 

  28. W. C. Oliver and J. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” J. Mater. Res. 7, 1564–1583 (1992).

    Article  Google Scholar 

  29. T. F. Page and S. V. Hainsworth, “Using nanoindentation techniques for the characterization of coated systems: A critique,” Surface Coat. Technol. 61, 201–208 (1993).

    Article  Google Scholar 

  30. M. I. Petrzhik and E. A. Levashov, “Modern methods for investigating functional surfaces of advanced materials by mechanical contact testing,” Crystall. Rep. 52, 966–974 (2007).

    Article  Google Scholar 

  31. Yu. R. Nemirovskii, M. S. Khadyev, M. A. Filippov, T. A. Belozerova, V. M. Blinov, M. V. Kostina, and A. V. Dymov, “Structure of Kh21A13 steel and phase transformations upon incomplete quenching of highnitrogen Fe–Cr steels,” Phys. Met. Metallogr. 93, 484–488 (2002).

    Google Scholar 

  32. Yu. I. Ustinovshchikov, A. V. Ruts, O. A. Bannykh, and V. M. Blinov, “Structure of high-nitrogen Fe–18%Cr alloys,” Metally, No. 1, 67–73 (1996).

    Google Scholar 

  33. Yu. I. Ustinovshchikov, O. A. Bannykh, V. M. Blinov, B. E. Pushkarev, M. V. Kostina, and A. V. Ruts, “Effect of heat treatment and the nitrogen content on the structure of Fe–Cr alloys,” Russ. Metall. (Metally) 2003, 263–268 (2003).

    Google Scholar 

  34. V. A. Shabashov, L. G. Korshunov, A. G. Mukoseev, V. V. Sagaradze, A. V. Makarov, V. P. Pilyugin, S. I. Novikov, and N. F. Vildanova, “Deformationinduced phase transitions in a high-carbon steel,” Mater. Sci. Eng., A 346, 196–207 (2003).

    Article  Google Scholar 

  35. V. A. Shabashov, S. V. Borisov, A. E. Zamatovsky, N. F. Vildanova, A. G. Mukoseev, A. V. Litvinov, and O. P. Shepatkovsky, “Deformation-induced transformations in nitride layers formed in bcc iron,” Mater. Sci. Eng., A 452–453, 575–583 (2007).

    Article  Google Scholar 

  36. W. C. Leslie and R. Z. Mieler, “The stabilization of austenite by closely spaced boundaries,” ASM Trans. Quart. 57, 972–979 (1964).

    Google Scholar 

  37. Y. T. Cheng and C. M. Cheng, “Relationships between hardness, elastic modulus and the work of indentation,” Appl. Phys. Lett. 73, 614–618 (1998).

    Article  Google Scholar 

  38. P. H. Mayrhofer, C. Mitterer, and J. Musil, “Structure–property relationships in single- and dual-phase nanocrystalline hard coatings,” Surf. Coat. Technol. 174–175, 725–731 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Makarov.

Additional information

Original Russian Text © A.V. Makarov, S.N. Luchko, V.A. Shabashov, E.G. Volkova, A.L. Osintseva, A.E. Zamatovskii, A.V. Litvinov, V.V. Sagaradze, 2017, published in Fizika Metallov i Metallovedenie, 2017, Vol. 118, No. 1, pp. 55–68.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makarov, A.V., Luchko, S.N., Shabashov, V.A. et al. Structural and phase transformations and micromechanical properties of the high-nitrogen austenitic steel deformed by shear under pressure. Phys. Metals Metallogr. 118, 52–64 (2017). https://doi.org/10.1134/S0031918X17010045

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X17010045

Keywords

Navigation