Skip to main content
Log in

Hyperfine-interaction parameters and magnetic phase antiferromagnet–ferromagnet transition in Ce(Fe1–x Si x )2

  • Electrical and Magnetic Properties
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Mössbauer spectroscopy study of Ce(Fe1–x Si x )2 compounds with x = 0 and 0.07 was performed at different temperatures. Easy magnetization axis of the CeFe2 ferromagnet at 130 K was shown to be in the {110} plane and to deviate from the [001] axis by ∼10°. Upon cooling, the Ce(Fe0.93Si0.07)2 compound undergoes the ferromagnet–antiferromagnet phase transition in a temperature range of 120–125 K, which is accompanied by the reduction of the lattice symmetry. The Debye temperature of the Ce(Fe0.93Si0.07)2 compound was estimated using temperature dependences of the integral intensity of Mössbauer spectrum; it is T D ≈ 310 K. When analyzing the P(H) hyperfine field distributions P(H) derived from the Mössbauer spectra of Ce(Fe0.93Si0.07)2, it was found that in the cubic structure of this compound in the ferromagnetic state there occur local rhomboherdal distortions typical of the antiferromagnetic state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Eriksson, L. Nordstrom, M. S. S. Brooks, and B. Johansson, “4f-band magnetism in CeFe2,” Phys. Rev. Lett. 60, 2523–2526 (1988).

    Article  Google Scholar 

  2. A. V. Deryagin, A. A. Kazakov, N. V. Kudrevatykh, V. N. Moskalev, N. V. Mushnikov, and S. V. Terent’ev, “Magnetic moment, magnetostriction and effective field at the nuclei of Fe in CeFe2, LuFe2 and their hydrides,” Fiz. Met. Metalloved. 60, 295–300 (1985).

    Google Scholar 

  3. L. Paolasini, B. Ouladdiaf, N. Bernhoeft, J-P. Sanchez, P. Vulliet, G. H. Lander, and P. Canfield, “Magnetic ground state of pure and doped CeFe2,” Phys. Rev. Lett. 90, 057201 (2003).

    Article  Google Scholar 

  4. S. J. Kennedy, P. J. Brown, and B. R. Coles, “A polarized neutron study of the magnetic form factors in CeFe2,” J. Phys.: Condens. Matter 5, 5169–5178 (1993).

    Google Scholar 

  5. S. B. Roy and B. R. Coles, “Magnetic behavior of CeFe2: Effects of Ru, Rh, and Pd substitutions,” Phys. Rev. B: Condens. Matter 39, 9360–9367 (1989).

    Article  Google Scholar 

  6. S. J. Kennedy and B. R. Coles, “The magnetic phases of pseudobinary Ce(Fe1-xMx)2 intermetallic compounds M = Al, Co, Ru,” J. Phys.: Condens. Matter 2, 1213–1222 (1990).

    Google Scholar 

  7. A. Haldar, N. K. Singh, Ya. Mudryk, K. G. Suresh, A. K. Nigam, and V. K. Pecharsky, “Temperature and magnetic field induced structural transformation in Sidoped CeFe2: An in-field X-ray diffraction study,” Solid State Commun. 150, 879–883 (2010).

    Article  Google Scholar 

  8. A. Haldar, K. G. Suresh, and A. K. Nigam, “Magnetism in gallium-doped CeFe2: Martensitic scenario,” Phys. Rev. B: Condens. Matter Mater. Phys. 78, 144429 (2008).

    Article  Google Scholar 

  9. V. S. Rusakov, Mössbauer Spectroscopy of Locally Heterogeneous Systems (Almaty, 2000) [in Russian].

    Google Scholar 

  10. U. Atzmony and M. P. Dariel, “Magnetic anisotropy and hyperfine interactions in CeFe2, GdFe2, and LuFe2,” Phys. Rev. B: Solid State 10, 2060–2067 (1974).

    Article  Google Scholar 

  11. L. Paolasini, S. Di Matteo, P. P. Deen, S. Wilkins, C. Mazzoli, B. Detlefs, G. Lapertot, and P. Canfield, “Resonant magnetic X-ray scattering in the antiferromagnet Ce(Fe1–xCox)2,” Phys. Rev. B: Condens. Matter Mater. Phys. 77, 094433 (2008).

    Article  Google Scholar 

  12. L. A. Stashkova, V. S. Gaviko, N. V. Mushnikov, and P. B. Terent’ev, “Hydrogen ordering in rare-earth intermetallic (Er, Tb)Fe2 compounds with giant spontaneous magnetostriction,” Phys. Met. Metallogr. 114, 985–991 (2013).

    Article  Google Scholar 

  13. A. V. Vershinin, V. V. Serikov, N. M. Kleinerman, N. V. Mushnikov, E. G. Gerasimov, V. S. Gaviko, and A. V. Proshkin, “Magnetic phase transitions in the Ce(Fe1–xSix)2 compounds,” Phys. Met. Metallogr. 115, 1208–1215 (2014).

    Article  Google Scholar 

  14. V. V. Ovchinnikov, N. V. Gushchina, and S. V. Ovchinnikov, “Mössbauer and resistometric study of α(bcc) → γ(fcc) phase transformation induced by ion bombardment and intraphase processes in the Fe + 8.25 at % Mn alloy,” Phys. Met. Metallogr. 116, 1234–1243 (2015).

    Article  Google Scholar 

  15. L. Paolasini, P. Dervenagas, P. Vulliet, J-P. Sanchez, G. H. Lander, A. Hiess, A. Panchula, and P. Canfield, “"Magnetic response function of the itinerant ferromagnet CeFe2,” Phys. Rev. B: ondens. Matter Mater. Phys. 58, 12117–12124 (1998).

    Article  Google Scholar 

  16. V. S. Rusakov, Foundations of Mössbauer Spectroscopy. A Tutorial (Fiz. Fac., Mosk. Gos. Univ., Moscow, 2011) [in Russian].

    Google Scholar 

  17. S. M. Dubel and W. Zinn, “Influence of Si on spin and charge density changes in bcc-iron,” J. Magn. Magn. Mater. 28, 261–276 (1982).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Naumov.

Additional information

Original Russian Text © A.V. Vershinin, S.P. Naumov, V.V. Serikov, N.M. Kleinerman, N.V. Mushnikov, V.S. Rusakov, 2016, published in Fizika Metallov i Metallovedenie, 2016, Vol. 117, No. 12, pp. 1234–1240.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vershinin, A.V., Naumov, S.P., Serikov, V.V. et al. Hyperfine-interaction parameters and magnetic phase antiferromagnet–ferromagnet transition in Ce(Fe1–x Si x )2 . Phys. Metals Metallogr. 117, 1185–1191 (2016). https://doi.org/10.1134/S0031918X16120176

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X16120176

Keywords

Navigation