Physics of Metals and Metallography

, Volume 118, Issue 1, pp 65–74 | Cite as

Deformation of nanocrystalline binary aluminum alloys with segregation of Mg, Co and Ti at grain boundaries

  • A. V. Zinovev
  • M. G. Bapanina
  • R. I. Babicheva
  • N. A. Enikeev
  • S. V. Dmitriev
  • K. Zhou
Strength and Plasticity
  • 46 Downloads

Abstract

The influence of the temperature and sort of alloying element on the deformation of the nanocrystalline (NC) binary Al alloys with segregation of 10.2 at % Ti, Co, or Mg over grain boundaries has been studied using the molecular dynamics. The deformation behavior of the materials has been studied in detail by the simulation of the shear deformation of various Al bicrystals with the grain-boundary segregation of impurity atoms, namely, Ti, Co, or Mg. The deformation of bicrystals with different grain orientation has been studied. It has been found that Co introduction into grain boundaries of NC Al has a strengthening effect due to the deceleration of the grain-boundary migration (GBM) and difficulty in the grain-boundary sliding (GBS). The Mg segregation at the boundaries greatly impedes the GBM, but stimulates the development of the GBS. In the NC alloy of Al–Ti, the GBM occurs actively, and the flow-stress values are close to the values characteristic of pure Al.

Keywords

molecular dynamics aluminum alloys segregation grain-boundary sliding grain-boundary migration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Z. Valiev, A. P. Zhilyaev, and T. G. Langdon, Bulk Nanostructured Materials: Fundamentals and Applications (Wiley, Hoboken, NJ, 2014).Google Scholar
  2. 2.
    A. P. Zhilyaev and T. G. Langdon, “Using high-pressure torsion for metal processing: Fundamentals and applications,” Prog. Mater. Sci. 53, 893–979 (2008).CrossRefGoogle Scholar
  3. 3.
    M. Zehetbauer, R. Grossinger, H. Krenn, M. Krystian, R. Pippan, P. Rogl, T. Waitz, and R. Wurschum, “Bulk nanostructured functional materials by severe plastic deformation,” Adv. Eng. Mater. 12, 692–700 (2010).CrossRefGoogle Scholar
  4. 4.
    Y. Estrin and A. Vinogradov, “Extreme grain refinement by severe plastic deformation: A wealth of challenging science,” Acta Mater. 61, 782–817 (2013).CrossRefGoogle Scholar
  5. 5.
    R. Z. Valiev and T. G. Langdon, “The art and science of tailoring materials by nanostructuring for advanced properties using SPD techniques,” Adv. Eng. Mater. 12, 677–691 (2010).CrossRefGoogle Scholar
  6. 6.
    R. Z. Valiev, I. Sabirov, A. P. Zhilyaev, and T. G. Langdon, “Bulk nanostructured metals for innovative applications,” JOM 64, 1134–1142 (2012).CrossRefGoogle Scholar
  7. 7.
    Z. X. Wu, Y. W. Zhang, M. H. Jhon, J. R. Greer, and D. J. Srolovitz, “Nanostructure and surface effects on yield in Cu nanowires,” Acta Mater. 61, 1831–1842 (2013).CrossRefGoogle Scholar
  8. 8.
    O. Sitdikov, E. Avtokratova, R. Babicheva, T. Sakai, K. Tsuzaki, and Y. Watanabe, “Influence of processing regimes on fine grained microstructure development in an AlMgSc alloy by hot equal-channel angular pressing,” Mater. Trans. 53, 56–62 (2012).CrossRefGoogle Scholar
  9. 9.
    O. S. Sitdikov, E. V. Avtokratova, and R. I. Babicheva, “Effect of temperature on the formation of a microstructure upon equal-channel angular pressing of the Al–Mg–Sc 1570 Alloy,” Phys. Met. Metallogr. 110, 153–161 (2010).CrossRefGoogle Scholar
  10. 10.
    D. V. Bachurin and P. Gumbsch, “Elastic and plastic anisotropy after straining of nanocrystalline palladium,” Phys. Rev. B: Condens. Matter Mater. Phys. 85, 085407 (2012).CrossRefGoogle Scholar
  11. 11.
    R. K. Khisamov, I. M. Safarov, R. R. Mulyukov, and Y. M. Yumaguzin, “Effect of grain boundaries on the electron work function of nanocrystalline nickel,” Phys. Solid State 55, 1–4 (2013).CrossRefGoogle Scholar
  12. 12.
    T. Shanmugasundaram, M. Heilmaier, B. S. Murty, and V. S. Sarma, “On the Hall–Petch relationship in a nanostructured Al–Cu alloy,” Mater. Sci. Eng., A 527, 7821–7825 (2010).CrossRefGoogle Scholar
  13. 13.
    R. K. Khisamov, Y. M. Yumaguzin, R. R. Mulyukov, K. S. Nazarov, I. M. Salimov, I. M. Safarov, and L. R. Zubairov, “Effect of a crystalline structure on the ion–electron emission of the Al + 6% Mg alloy,” Tech. Phys. Lett. 39, 265–267 (2013).CrossRefGoogle Scholar
  14. 14.
    J. Zhang, Y. N. Huang, C. Mao, and P. Peng, “Structural, elastic and electronic properties of T (Al2Cu) and S (Al2CuMg) strengthening precipitates in Al–Cu–Mg series alloys: First-principles calculations,” Solid State Commun. 152, 2100–2104 (2012).CrossRefGoogle Scholar
  15. 15.
    E. Avtokratova, O. Sitdikov, M. Markushev, and R. Mulyukov, “Extraordinary high-strain rate superplasticity of severely deformed Al–Mg–Sc–Zr alloy,” Mater. Sci. Eng., A 538, 386–390 (2012).CrossRefGoogle Scholar
  16. 16.
    M. Zha, Y. Li, R. H. Mathiesen, R. Bjorge, and H. J. Roven, “Achieve high ductility and strength in an Al–Mg alloy by severe plastic deformation combined with inter-pass annealing,” Mater. Sci. Eng., A 59, 141–146 (2014).CrossRefGoogle Scholar
  17. 17.
    U. F. Al-Qawabeha and S. M. Al-Qawabah, “Effect of roller burnishing on pure aluminum alloyed by copper,” Indust. Lubr. Tribol. 65, 71–77 (2013).CrossRefGoogle Scholar
  18. 18.
    J. Wang, S.-L. Shang, Y. Wang, Z.-G. Mei, Y.-F. Liang, Y. Du, and Z.-K. Liu, “First-principles calculations of binary Al compounds: Enthalpies of formation and elastic properties,” CALPHAD 35, 562–573 (2011).CrossRefGoogle Scholar
  19. 19.
    W. Zhou, L. Liu, B. Li, Q. Song, and P. Wu, “Structural, elastic, and electronic properties of Al–Cu intermetallics from first principles calculations,” J. Electron. Mater. 38, 356–364 (2009).CrossRefGoogle Scholar
  20. 20.
    R. Zugic, B. Szpunar, V. D. Krstic, and U. Erb, “Effect of porosity on the elastic response of brittle materials: An embedded-atom method approach,” Philos. Mag. A 75, 1041–1055 (1997).CrossRefGoogle Scholar
  21. 21.
    X. Sauvage, A. Ganeev, Y. Ivanisenko, N. Enikeev, M. Murashkin, and R. Valiev, “Grain boundary segregation in UFG alloys processed by severe plastic deformation,” Adv. Eng. Mater. 14, 968–974 (2012).CrossRefGoogle Scholar
  22. 22.
    I. Sabirov, M. Y. Murashkin, and R. Z. Valiev, “Nanostructured aluminium alloys produced by severe plastic deformation: New horizons in development,” Mater. Sci. Eng., A 560, 1–24 (2013).CrossRefGoogle Scholar
  23. 23.
    X. Sauvage, N. Enikeev, R. Valiev, Y. Nasedkina, and M. Murashkin, “Atomic-scale analysis of the segregation and precipitation mechanisms in a severely deformed Al–Mg alloy,” Acta Mater. 72, 125–136 (2014).CrossRefGoogle Scholar
  24. 24.
    M. M. Abramova, N. A. Enikeev, R. Valiev, A. Etienne, B. Radiguet, Y. Ivanisenko, and X. Sauvage, “Grain boundary segregation induced strengthening of an ultrafine-grained austenitic stainless steel,” Mater. Lett. 136, 349–352 (2014).CrossRefGoogle Scholar
  25. 25.
    J. Schiotz, T. Vegge, F. D. Di Tolla, and K. W. Jacobsen, “Atomic-scale simulations of the mechanical deformation of nanocrystalline metals,” Phys. Rev. B: Condens. Matter Mater. Phys. 60, 11971–11983 (1999).CrossRefGoogle Scholar
  26. 26.
    D. V. Bachurin and P. Gumbsch, “Atomistic simulation of the deformation of nanocrystalline palladium: The effect of voids,” Model. Simul. Mater. Sci. Eng. 22, 025011 (2014).CrossRefGoogle Scholar
  27. 27.
    X. Tingdong and Z. Lei, “The elastic modulus in the grain-boundary region of polycrystalline materials,” Philos. Mag. Lett. 84, 225–233 (2004).CrossRefGoogle Scholar
  28. 28.
    R. I. Babicheva and K. Y. Mulyukov, “Thermomechanical treatment to achieve stable two-way shape memory strain without training in Ti–49.8 at % Ni alloy,” Appl. Phys. A 116, 1857–1865 (2014).CrossRefGoogle Scholar
  29. 29.
    N. S. Surikova, A. A. Klopotov, and E. A. Korznikova, “Mechanisms of plastic deformation in microcrystalline and nanocrystalline TiNi-based alloys,” Phys. Met. Metallogr. 110, 269–278 (2010).CrossRefGoogle Scholar
  30. 30.
    M. Abo-Elsoud, H. Esmail, and M. S. Sobhy, “Correlation between elastic modulus of Al–Cu alloys and metallurgical characteristics of their constituent elements,” Radiat. Eff. Defects Solids 162, 685–690 (2007).CrossRefGoogle Scholar
  31. 31.
    R. I. Babicheva, S. V. Dmitriev, Y. Zhang, S. W. Kok, and K. Zhou, “Effect of Co distribution on plastic deformation of nanocrystalline Al–10.2 at % Co alloy,” J. Nanomater. 2015, 231848 (2015).CrossRefGoogle Scholar
  32. 32.
    G. Sha, S. P. Ringer, Z. C. Duan, and T. G. Langdon, “An atom probe characterisation of grain boundaries in an aluminum alloy processed by equal-channel angular pressing,” Int. J. Mater. Res. 100, 1674–1678 (2009).CrossRefGoogle Scholar
  33. 33.
    R. Fernandez and G. Gonzalez-Doncel, “A unified description of solid solution creep strengthening in Al–Mg alloys,” Mater. Sci. Eng., A 550, 320–324 (2012).CrossRefGoogle Scholar
  34. 34.
    A. Villuendas, J. Jorba, and A. Roca, “The Role of Precipitates in the Behavior of Young’s modulus in aluminum alloys,” Metall. Mater. Trans. A 45, 3857–3865 (2014).CrossRefGoogle Scholar
  35. 35.
    P. V. Liddicoat, X. Z. Liao, Y. H. Zhao, Y. Zhu, M. Y.Murashkin, E. J. Lavernia, R. Z. Valiev, and S. P. Ringer, “Nanostructural hierarchy increases the strength of aluminum alloys,” Nature Commun. 1, Art. 63 (2010).CrossRefGoogle Scholar
  36. 36.
    R. Ferragut, P. V. Liddicoat, X.-Z. Liao, Y.-H. Zhao, E. J. Lavernia, R. Z. Valiev, A. Dupasquier, and S. P. Ringer, “Chemistry of grain boundary environments in nanocrystalline Al 7075,” J. Alloys Compd. 495, 391–393 (2010).CrossRefGoogle Scholar
  37. 37.
    I. G. Brodova, I. G. Shirinkina, A. N. Petrova, O. V. Antonova, and V. P. Pilyugin, “Evolution of the structure of V95 aluminum alloy upon high-pressure torsion,” Phys. Met. Metallogr. 111, 630–638 (2011).CrossRefGoogle Scholar
  38. 38.
    J. Crump, X. G. Qiao, and M. J. Starink, “The effect of high-pressure torsion on the behavior of intermetallic particles present in Al–1Mg and Al–3Mg,” J. Mater. Sci. 47, 1751–1757 (2012).CrossRefGoogle Scholar
  39. 39.
    R. Z. Valiev, N. A. Enikeev, M. Yu. Murashkin, V. U. Kazykhanov, and X. Sauvage, “On the origin of the extremely high strength of ultrafine-grained Al alloys produced by severe plastic deformation,” Scr. Mater. 63, 949–952 (2010).CrossRefGoogle Scholar
  40. 40.
    G. Nurislamova, X. Sauvage, M. Murashkin, R. Islamgaliev, and R. Valiev, “Nanostructure and related mechanical properties of an Al–Mg–Si alloy processed by severe plastic deformation,” Philos. Mag. Lett. 88, 459–466 (2008).CrossRefGoogle Scholar
  41. 41.
    R. Z. Valiev, N. A. Enikeev, M. Yu. Murashkin, S. E. Alexandrov, and R. V. Goldshtein, “Superstrength of ultrafine grained aluminum alloys produced by severe plastic deformation,” Dokl. Phys. 55, 267–270 (2010).CrossRefGoogle Scholar
  42. 42.
    B. Straumal, R. Valiev, O. Kogtenkova, P. Zieba, T. Czeppe, E. Bielanska, and M. Faryna, “Thermal evolution and grain boundary phase transformations in severely deformed nanograined Al–Zn alloys,” Acta Mater. 56, 6123–6131 (2008).CrossRefGoogle Scholar
  43. 43.
    B. B. Straumal, A. Korneva, O. Kogtenkova, L. Kurmanaeva, P. Zieba, A. Wierzbicka-Miernik, S. N. Zhevnenko, and B. Baretzky, “Grain boundary wetting and premelting in the Cu–Co alloys,” J. Alloys Compd. 615, S183–S187 (2014).CrossRefGoogle Scholar
  44. 44.
    B. B. Straumal, X. Sauvage, B. Baretzky, A. A. Mazilkin, and R. Z. Valiev, “Grain boundary films in Al–Zn alloys after high pressure torsion,” Scr. Mater. 70, 59–62 (2014).CrossRefGoogle Scholar
  45. 45.
    E. R. Homer, S. M. Foiles, E. A. Holm, and D. L. Olmsted, “Phenomenology of shear-coupled grain boundary motion in symmetric tilt and general grain boundaries,” Acta Mater. 61, 1048–1060 (2013).CrossRefGoogle Scholar
  46. 46.
    D. A. Molodov, V. A. Ivanov, and G. Gottstein, “Low angle tilt boundary migration coupled to shear deformation,” Acta Mater. 55, 1843–1848 (2007).CrossRefGoogle Scholar
  47. 47.
    A. D. Sheikh-Ali, “Coupling of grain boundary sliding and migration within the range of boundary specialness,” Acta Mater. 58, 6249–6255 (2010).CrossRefGoogle Scholar
  48. 48.
    D. A. Molodov, T. Gorkaya, and G. Gottstein, “Stressdriven migration of symmetrical <100> tilt grain boundaries in Al bicrystals,” Acta Mater. 57, 5396–5405 (2009).CrossRefGoogle Scholar
  49. 49.
    D. A. Molodov, T. Gorkaya, and G. Gottstein, “Dynamics of grain boundaries under applied mechanical stress,” J. Mater. Sci. 46, 4318–4326 (2011).CrossRefGoogle Scholar
  50. 50.
    T. Frolov, “Effect of interfacial structural phase transitions on the coupled motion of grain boundaries: A molecular dynamics study,” Appl. Phys. Lett. 104, 211905 (2014).CrossRefGoogle Scholar
  51. 51.
    T. Gorkaya, K. D. Molodov, D. A. Molodov, and G. Gottstein, “Concurrent grain boundary motion and grain rotation under an applied stress,” Acta Mater. 59, 5674–5680 (2011).CrossRefGoogle Scholar
  52. 52.
    D. A. Molodov, T. Gorkaya, and G. Gottstein, “Migration of the S7 tilt grain boundary in Al under an applied external stress,” Scr. Mater. 65, 990–993 (2011).CrossRefGoogle Scholar
  53. 53.
    F. Mompiou and M. Legros, “Quantitative grain growth and rotation probed by in-situ TEM straining and orientation mapping in small grained Al thin films,” Scri. Mater. 99, 5–8 (2015).CrossRefGoogle Scholar
  54. 54.
    M. J. Rahman, H. S. Zurob, and J. J. Hoyt, “A comprehensive molecular dynamics study of low angle grain boundary mobility in a pure aluminum system,” Acta Mater. 74, 39–48 (2014).CrossRefGoogle Scholar
  55. 55.
    A. K. Maier, D. Mari, I. Tkalcec, and R. Schaller, “Theoretical modelling of grain boundary anelastic relaxations,” Acta Mater. 74, 132–140 (2014).CrossRefGoogle Scholar
  56. 56.
    J. Schafer and K. Albe, “Influence of solutes on the competition between mesoscopic grain boundary sliding and coupled grain boundary motion,” Scr. Mater. 66, 315–317 (2012).CrossRefGoogle Scholar
  57. 57.
    J. Schafer and K. Albe, “Competing deformation mechanisms in nanocrystalline metals and alloys: Coupled motion versus grain boundary sliding,” Acta Mater. 60, 6076–6085 (2012).CrossRefGoogle Scholar
  58. 58.
    F. Abdeljawad and S. M. Foiles, “Stabilization of nanocrystalline alloys via grain boundary segregation: A diffuse interface model,” Acta Mater. 101, 159–171 (2015).CrossRefGoogle Scholar
  59. 59.
    R. I. Babicheva, S. V. Dmitriev, Y. Zhang, S. W. Kok, N. Srikanth, B. Liu, and K. Zhou, “Effect of grain boundary segregations of Fe, Co, Cu, Ti, Mg and Pb on small plastic deformation of nanocrystalline Al,” Comp. Mater. Sci. 98, 410–416 (2015).CrossRefGoogle Scholar
  60. 60.
    R. I. Babicheva, S. V. Dmitriev, L. Bai, Y. Zhang, S. W. Kok, G. Kang, and K. Zhou, “Effect of grain boundary segregation on the deformation mechanisms and mechanical properties of nanocrystalline binary aluminum alloys,” Comp. Mater. Sci. 117, 445–454 (2016).CrossRefGoogle Scholar
  61. 61.
    R. Babicheva, S. Dmitriev, Y. Zhang, S. W. Kok, and K. Zhou, “Effect of grain boundary segregation on shear deformation of nanocrystalline binary aluminum alloys at room temperature,” Mater. Sci. Forum 838–839, 89–94 (2016).Google Scholar
  62. 62.
    S. Brandstetter, P. M. Derlet, S. Van Petegem, and H. van Swygenhoven, “Williamson–Hall anisotropy in nanocrystalline metals: X-ray diffraction experiments and atomistic simulations,” Acta Mater. 56, 165–176 (2008).CrossRefGoogle Scholar
  63. 63.
    D. V. Bachurin and P. Gumbsch, “Atomistic simulation of straining of nanocrystalline palladium,” Acta Mater. 58, 5491–5501 (2010).CrossRefGoogle Scholar
  64. 64.
    R. J. Gillespie, D. A. Humphreys, N. C. Baird, and E. A. Robinson, Chemistry (Allyn and Bacon, Newton, Mass., 1986).Google Scholar
  65. 65.
    S. Plimpton, “Fast parallel algorithms for short-range molecular dynamics,” J. Comp. Phys. 117, 1–19 (1995).CrossRefGoogle Scholar
  66. 66.
    LAMMPS Molecular Dynamics Simulator. http://www.lammps.sandia.gov (cited April 14, 2015).Google Scholar
  67. 67.
    P. G. P. Purja, V. Yamakov, and Y. Mishin, “Interatomic potential for the ternary Ni–Al–Co system and application to atomistic modeling of the B2–L10 martensitic transformation,” Model. Simul. Mater. Sci. Eng. 23, 065006 (2015).CrossRefGoogle Scholar
  68. 68.
    R. R. Zope and Y. Mishin, “Interatomic potentials for atomistic simulations of the Ti–Al system,” Phys. Rev. B: Condens. Matter Mater. Phys. 68, 024102 (2003).CrossRefGoogle Scholar
  69. 69.
    M. I. Mendelev, M. Asta, M. J. Rahman, and J. J. Hoyt, “Development of interatomic potentials appropriate for simulation of solid–liquid interface properties in Al–Mg alloys,” Philos. Mag. 89, 3269–3285 (2009).CrossRefGoogle Scholar
  70. 70.
    D. Wolf, V. Yamakov, S. R. Phillpot, A. Mukherjee, and H. Gleiter, “Deformation of nanocrystalline materials by molecular-dynamics simulation: Relationship to experiments?” Acta Mater. 53, 1–40 (2005).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. V. Zinovev
    • 1
    • 2
    • 3
  • M. G. Bapanina
    • 1
  • R. I. Babicheva
    • 1
    • 4
  • N. A. Enikeev
    • 5
  • S. V. Dmitriev
    • 1
    • 6
  • K. Zhou
    • 4
  1. 1.Institute for Metals Superplasticity ProblemsRussian Academy of SciencesUfaRussia
  2. 2.Institute of Nuclear Materials ScienceSCK·CENMolBelgium
  3. 3.Université Catholique de LouvainiMMCLouvain-la-NeuveBelgium
  4. 4.School of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingaporeSingapore
  5. 5.Institute of Physics of Advanced MaterialsUSATUUfaRussia
  6. 6.Scientific Research Laboratory Mechanics of New NanomaterialsPeter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations