Skip to main content
Log in

Structure and thermophysical properties of aluminum-matrix composites

  • Structure, Phase Transformations, and Diffusion
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The microstructure and thermophysical properties of aluminum-matrix composites have been studied, in which a granulated Al–Zn–Mg–Cu alloy has been used as the matrix, and SiC particles taken in the amounts of 10, 20, and 30 vol % have bee used as the filler. It has been shown that, with an increase in the amount of the filler, the temperatures of the solidus and liquidus of the composites and the values of the thermal expansion coefficient and density increase, whereas the heat capacity, thermal conductivity, and thermal diffusivity decrease. The heat capacity of the composite depends on the amount of the filler: upon heating from 25 to 500°С, the heat capacity of the composite with 10 vol % SiC increases by only 16%, while that of the composite with 20 vol % SiC increases by 19%; and, at 39 vol % SiC, it increases by 36%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Composite Materials, Vol. 4: Metallic Matrix Composites, Ed. by K. G. Kreider (Academic, New York, 1974; Mashinostroenie, Moscow, 1978).

  2. I. A. Evdokimov, E. S. Prusov, and A. V. Kireev, “Friction metallic-matrix composite materials modified by carbon nanostructures based on aluminum and its alloys with enhanced mechanical and exploitation properties,” Polzunov. Al’manakh, No. 2, 264–268 (2010).

    Google Scholar 

  3. I. N. Fridlyander, “Modern aluminum and magnesium alloys and composite materials based on them,” Metal Sci. Heat Treat. 44, 292–296 (2002).

    Article  Google Scholar 

  4. L. R. Vishnyakov, V. P. Moroz, I. M. Romashko, E. L. Vishnyakova, and O. P. Yaremenko, “Fabrication of aluminum matrix composites reinforced with carbide and oxide fillers,” Kompoz. Nanostrukt., No. 1, 37–45 (2013).

    Google Scholar 

  5. R. Fernandez and G. Gonzalez-Doncel, “Understanding the creep fracture behavior of aluminum alloys and aluminum alloy metal matrix composites,” Mater. Sci. Eng., A 528, 8218–8225 (2011).

    Article  Google Scholar 

  6. Yishi Su, Qiubao Ouyang, Wenlong Zhang, Zhiqiang Li, Qiang Guo, Genlian Fan, and Di Zhang, “Composite structure modeling and mechanical behavior of particle reinforced metal matrix composites,” Mater. Sci. Eng., A 597, 359–369 (2014).

    Article  Google Scholar 

  7. L. Zhao, M. Zhao, H. Yan, X. Cao, and J. Zhang, “Mechanical behavior of SiC foam–SiC particles/Al hybrid composites,” Trans. Nonferr. Met. Soc. China 19, 547–551 (2009).

    Article  Google Scholar 

  8. F. Ortega-Celaya, M. I. Pech-Canul, J. Lopes-Cuevars, J. C. Rendon-Angeles, and M. A. Pech-Canul, “Microstructure and impact behavior of Al/SiCp composites fabricated by pressure-less infiltration with different types of SiCp,” Mater. Proces. Tech. 183, 368–373 (2007).

    Article  Google Scholar 

  9. A. V. Konovalov and S. V. Smirnov, “Modern state and directions of study of Al/SiC metal-matrix composites,” Konstrukt. Kompozit. Mater., No. 1, 30–35 (2015).

    Google Scholar 

  10. N. B. Pugacheva, N. S. Michurov, and T. M. Bykova, “The structure and properties of the 30Al–70SiC metal matrix composite material,” Diagn., Res., Mech. Mater. Struct., No. 6, 6–18 (2015). doi 10.17804/2410-9908.2015.6.006-018. http://www.dream-journal.org/issues/2015-6/2015-6_56.html10.17804/2410-9908.2015.6.006-018

    Google Scholar 

  11. N. B. Pugacheva, N. S. Michurov, and T. M. Bykova, “Structure and properties of the Al/SiC composite material,” Phys. Met. Metallogr. 117, 654–660 (2016).

    Google Scholar 

  12. A. S. Smirnov, A. V. Konovalov, and O. Yu. Muizemnek, “Modelling and simulation of strain resistance of alloys taking into account barrier effects,” Diagn., Res., Mech. Mater. Struct., No. 1, 61–72 (2015). doi 10.17804/2410-9908.2015.1.061-072. http://www.dream-journal.org/issues/2015-1/2015-1_18.html10.17804/2410-9908.2015.1.061-072.

    Google Scholar 

  13. Yu. V. Khalevitskii, M. V. Myasnikova, and A. V. Konovalov, “Methods of formation of calculating model of representative volume of Al/SiC metallomatrix composite with internal structure,” Matemat. Model. Estest. Nauk. 1, 277–280 (2014).

    Google Scholar 

  14. V. S. Chirkin, Thermophysical Properties of Materials for Nuclear Industry (Atomizdat, Moscow, 1978) [in Russian].

    Google Scholar 

  15. A. I. Belyaev, Metallurgy of Light Metals (Metallurgiya, Moscow, 1970) [in Russian].

    Google Scholar 

  16. “Overview of mechanical testing standards,” Appl. Bull., CSM Instr., No. 18 (2002).

  17. B. A. Kolachev, V. I. Elagin, and V. A. Livanov, Metallography and Heat Treatment of Nonferrous Metals and Alloys (MISiS, Moscow, 2001) [in Russian].

    Google Scholar 

  18. S. V. Smirnov and E. O. Smirnova, “A technique for determining coefficients of the “stress–strain” diagram by nanoscratch test results,” J. Mater. Res. 29, 1730–1736 (2014).

    Article  Google Scholar 

  19. D. A. Konovalov, I. A. Golubkova, and S. V. Smirnov, “Determining the strength properties of individual layers of strained laminated composites by kinetic indentation,” Russ. J. Nondestruct. Testing 47, 852–857 (2011).

    Article  Google Scholar 

  20. V. Yu. Kulikovskii, V. Vorlichek, P. Bogach, M. Strainyanek, Z. Chtvertlik, A. V. Kurdyumov, and V. F. Gorban’, “Mechanical properties of amorphous and nanocrystalline films of silicon and silicon carbide,” Nanostrukt. Materialoved., No. 1, 42–51 (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. B. Pugacheva.

Additional information

Original Russian Text © N.B. Pugacheva, N.S. Michurov, E.I. Senaeva, T.M. Bykova, 2016, published in Fizika Metallov i Metallovedenie, 2016, Vol. 117, No. 11, pp. 1188–1195.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pugacheva, N.B., Michurov, N.S., Senaeva, E.I. et al. Structure and thermophysical properties of aluminum-matrix composites. Phys. Metals Metallogr. 117, 1144–1151 (2016). https://doi.org/10.1134/S0031918X16110119

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X16110119

Keywords

Navigation