Skip to main content
Log in

Recrystallization of submicrocrystalline niobium upon heating above and below the temperature of thermally activated nucleation

  • Structure, Phase Transformations, and Diffusion
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The recrystallization of a niobium submicrocrystalline structure created by high-pressure torsion at room temperature has been investigated. It has been shown that continuous recrystallization begins at just 300°С. It has been characterized by the nonuniform growth of microcrystallites, which prevents the formation of a uniform submicrograin structure. The formation of thermally activated recrystallization nuclei at 900°C increases the nonuniformity of grain size and somehow refines recrystallized grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. A. Smirnova, V. I. Levit, V. P. Pilyugin, R. I. Kuznetsov, L. S. Davydova, and V. A. Sazonova, “Evolution of the structure of fcc single crystals during strong plastic deformation,” Fiz. Met. Metalloved. 61, 1170–1177 (1986).

    Google Scholar 

  2. M. V. Degtyarev, T. I. Chashchukhina, L. M. Voronova, A. M. Patselov, and V. P. Pilyugin, “Influence of the relaxation processes on the structure formation in pure metals and alloys under high-pressure deformation,” Acta Mater. 55, 6039–6050 (2007).

    Article  Google Scholar 

  3. R. A. Andrievskii and A. M. Glezer, “Size effects in nanocrystalline materials: II. Mechanical and physical properties,” Phys. Met. Metallogr. 89, 83–102 (2000).

    Google Scholar 

  4. R. K. Islamgaliev, K. M. Nesterov, and R. Z. Valiev, “Structure, strength, and electric conductivity of a Cu‒Cr copper-based alloy subjected to severe plastic deformation,” Phys. Met Metallogr. 116, 209–218 (2015).

    Article  Google Scholar 

  5. N. A. Smirnova, V. I. Levit, V. P. Pilyugin, R. I. Kuznetsov, M. V. Degtyarev, “Low-temperature recrystallization of nickel and copper,” Fiz. Met. Metalloved. 62, 566–570 (1986).

    Google Scholar 

  6. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J. J. Jonas, “Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions,” Prog. Mater. Sci. 60, 130–207 (2014).

    Article  Google Scholar 

  7. N. I. Noskova and R. R. Mulyukov, Submicrocrystalline and nanocrystalline Metalls and Alloys (Ural. Otd. Ross. Akad. Nauk, Ekaterinburg, 2003) [in Russian].

    Google Scholar 

  8. E. N. Popova, V. V. Popov, E. P. Romanov, and V. P. Pilyugin, “Effect of the degree of deformation on the structure and thermal stability of nanocrystalline niobium produced by high-pressure torsion,” Phys. Met. Metallogr. 103, 407–413 (2007).

    Article  Google Scholar 

  9. Yu. G. Krasnoperova, L. M. Voronova, M. V. Degtyarev, T. I. Chashchukhina, and N. N. Resnina, “Recrystallization of nickel upon heating below the temperature of thermoactivated nucleation,” Phys. Met. Metallogr. 116, 79–86 (2015).

    Article  Google Scholar 

  10. M. V. Degtyarev, L. M. Voronova, and T. I. Chashchukhina, “Low-temperature recrystallization of pure iron deformed by shear under pressure,” Phys. Met. Metallogr. 97, 72–81 (2004).

    Google Scholar 

  11. L. M. Voronova, M. V. Degtyarev, and T. I. Chashchukhina, “Recrystallization of the ultradispersed structure of pure iron formed at different stages of the deformation-induced strain hardening,” Phys. Met. Metallogr. 104, 262–273 (2007).

    Article  Google Scholar 

  12. M. A. Shtremel’, Strength of Alloys. Part 1. Structure Defects (Metallurgiya, Moscow, 1982) [in Russian].

    Google Scholar 

  13. V. P. Pilyugin, T. M. Gapontseva, T. I. Chashchukhina, L. M. Voronova, L. I. Shchinova, and M. V. Degtyarev, “Evolution of the structure and hardness of nickel upon cold and low-temperature deformation under pressure,” Phys. Met. Metallogr. 105, 409–419 (2008).

    Article  Google Scholar 

  14. E. N. Popova, A. V. Stolbovskii, V. V. Popov, and V. P. Pilyugin, “Evolution of niobium structure upon severe plastic deformation,” Deform. Razrush. Mater., No. 7, 13–17 (2009).

    Google Scholar 

  15. I. G. Brodova, I. G. Shirinkina, A. N. Petrova, V. P. Pilyugin, and T. P. Tolmachev, “Structure of an AMTs aluminum alloy after high-pressure torsion in liquid nitrogen,” Phys. Met. Metallogr. 114, 667–671 (2013).

    Article  Google Scholar 

  16. Yu. G. Krasnoperova, M. V. Degtyarev, L. M. Voronova, and T. I. Chashchukhina, “Effect of annealing temperature on the recrystallization of nickel with different ultradisperse structures,” Phys. Met. Metallogr. 117, 277–284 (2016).

    Article  Google Scholar 

  17. R. Srinivasan, G. B. Viswanathan, V. I. Levit, and H. L. Fraser, “Orientation effect on recovery and recrystallization of cold rolled niobium single crystals,” Mater. Sci. Eng., A 507, 179–189 (2009).

    Article  Google Scholar 

  18. J. O. Stiegler, C. K. H. Dubose, Sr. R. E. Reed, and C. J. McHargue, “Dislocations in deformed and annealed niobium single crystals,” Acta Metall. 11, 851–860 (1963).

    Article  Google Scholar 

  19. E. N. Popova, V. V. Popov, E. P. Romanov, and V. P. Pilyugin, “Thermal stability of nanocrystalline Nb produced by severe plastic deformation,” Phys. Met. Metallogr. 101, 52–57 (2006).

    Article  Google Scholar 

  20. M. V. Degtyarev, T. I. Chashchukhina, L. M. Voronova, and V. I. Kopylov, “Correlation between the degree of strain, hardness, and sizes of structure elements in iron and structural steels under large plastic deformation by different modes,” Fiz. Mezomekh. 16, 71–80 (2013).

    Google Scholar 

  21. T. M. Gapontseva, M. V. Degtyarev, V. P. Pilyugin, T. I. Chashchukhina, L. M. Voronova, and A. M. Patselov, “Effect of temperature of HPT deformation and the initial orientation on the structural evolution in single-crystal niobium,” Phys. Met. Metallogr. 117, 336–347 (2016).

    Article  Google Scholar 

  22. E. Houdremont, Handbuch der Sonderstahlkunde (A Handbook of Special Steels), Vol. 2 (Springer, Berlin, 1963; Metallurgiya, Moscow, 1966).

    Google Scholar 

  23. M. V. Degtyarev, T. I. Chashchukhina, L. M. Voronova, L. S. Davydova, and V. P. Pilyugin, “Deformation strengthening and structure of structural steel upon shear under pressure,” Phys. Met. Metallogr. 90, 604–611 (2000).

    Google Scholar 

  24. V. V. Popov, E. N. Popova, A. V. Stolbovsky, and V. P. Pilyugin, “The structure of Nb obtained by severe plastic deformation and its thermal stability,” Mater. Sci. Forum 667–669, 409–414 (2011).

    Google Scholar 

  25. V. Yu. Novikov, Secondary Recrystallization (Metallurgiya, Moscow, 1990) [in Russian].

    Google Scholar 

  26. T. Suzuki, H. Koizumi, and H. O. K. Kirchner, “Plastic flow stress of B.C.C. transition metals and the Peierls potential,” Acta Metall. Mater. 43, 2177–2187 (1995).

    Article  Google Scholar 

  27. J.-Y. Kim, D. Jang, and J. R. Greer, “Tensile and compressive behavior of tungsten, molybdenum, tantalum and niobium at the nanoscale,” Acta Mater. 58, 2355–2363 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Voronova.

Additional information

Original Russian Text © M.V. Degtyarev, L.M. Voronova, T.I. Chashchukhina, D.V. Shinyavskii, V.I. Levit, 2016, published in Fizika Metallov i Metallovedenie, 2016, Vol. 117, No. 11, pp. 1151–1159.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Degtyarev, M.V., Voronova, L.M., Chashchukhina, T.I. et al. Recrystallization of submicrocrystalline niobium upon heating above and below the temperature of thermally activated nucleation. Phys. Metals Metallogr. 117, 1111–1118 (2016). https://doi.org/10.1134/S0031918X16110053

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X16110053

Keywords

Navigation