Skip to main content
Log in

Simulation of hydrogen diffusion in TiH x structures

  • Structure, Phase Transformations, and Diffusion
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Quantum-mechanical calculations of the energies of the formation of Frenkel pairs and barriers for hydrogen migration via different mechanisms in the titanium hydride δ-TiH x and in the α phase of titanium have been carried out. Using the potential of interaction developed for the molecular-dynamic simulation, diffusion coefficients of hydrogen in fcc and hcp lattices of TiH x were calculated depending on the temperature. The opportunity to approximate the coefficients of hydrogen self-diffusion has been analyzed in terms of the model of non-interacting point defects. For δ-TiH x , the range of concentrations and temperatures was separated where the self-diffusion of hydrogen becomes liquid-like (ceases be dependent on the hydrogen concentration), upon the transition into which there takes place a sharp increase in the isochoric heat capacity. The effect of defects in the Ti sublattice on the coefficient of self-diffusion of H has been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Mueller, D. Blackledge, and G. G. Libowitz, Metal Hydrides (Academic, New York, 1968; Atomizdat, Moscow, 1973).

    Google Scholar 

  2. B. A. Kolachev, V. V. Sadkov, V. D. Talalaev, and A. V. Fishgoit, Vacuum Annealing of Titanium Constructions (Mashinostroenie, Moscow, 1991) [in Russian].

    Google Scholar 

  3. Y. Fukai, The Metal–Hydrogen System: Basic Bulk Properties (Springer, New York, 2009).

    Google Scholar 

  4. G. E. Norman and V. V. Stegailov, “Stochastic theory of the classical molecular dynamics method,” Mathem. Models Compt. Simul. 5, 305–333 (2013).

    Article  Google Scholar 

  5. S. J. Plimpton, “Fast parallel algorithms for shortrange molecular dynamics,” J. Compt. Phys. 117, 1–19 (1995).

    Article  Google Scholar 

  6. The potential in the format for LAMMPS is available by an e-mail request from the address alexey.kuksin@gmail.ru

  7. Y. Mishin, M. J. Mehl, and D. A. Papaconstantopoulos, “Phase stability in the Fe–Ni system: Investigation by first-principle calculations and atomistic simulations,” Acta Mater. 53, 4029–4041 (2005).

    Article  Google Scholar 

  8. F. Apostol and Y. Mishin, “Angular-dependent interatomic potential for the aluminum-hydrogen system,” Phys. Rev. B: Condens. Matter Mater. Phys. 82, 144115 (2010).

    Article  Google Scholar 

  9. D. E. Smirnova, A. Yu. Kuksin, S. V. Starikov, and V. V. Stegailov, “Atomistic modeling of the self-diffusion in ?-U and ?-U–Mo,” Phys. Met. Metallogr. 116, 445–455 (2015).

    Article  Google Scholar 

  10. F. Ercolessi and J. B. Adams, “Interatomic potentials from first-principles calculations: The force-matching method,” Europhys. Lett. 26, 583–590 (1994).

    Article  Google Scholar 

  11. P. Brommer and F. Gähler, “Potfit: Effective potentials from ab initio data,” Model. Simul. Mater. Sci. Eng. 15, 295–304 (2007).

    Article  Google Scholar 

  12. P. Brommer and F. Gähler, “Effective potentials for quasicrystals from ab-initio data,” Philos. Mag. 86, 753–758 (2006).

    Article  Google Scholar 

  13. G. Kresse and J. Hafner, “Ab initio molecular dynamics for liqud metals,” Phys. Rev. B: Condens. Matter 47, 558–561 (1993).

    Article  Google Scholar 

  14. G. Kresse and J. Furthmuller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B: Condens. Matter 54, 11169–11186 (1996).

    Article  Google Scholar 

  15. P. E. Blochl, “Projector augmented-wave method,” Phys. Rev. B: Condens. Matter 50, 17953–17979 (1994).

    Article  Google Scholar 

  16. G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B: Condens. Matter 59, 1758–1775 (1999).

    Article  Google Scholar 

  17. Chemist Handbook (NTI Khim. Lit., Moscow, 1962) [in Russian].

  18. D. Connetable, J. Huez, E. Andrieu, and C. Mijoule, “First-principles study of diffusion and interactions of vacancies and hydrogen in HCP-titanium,” J. Phys.: Condens. Matter 23, 405401 (2011).

    Google Scholar 

  19. A. Yu. Kuksin, A. S. Rokhmanenkov, and V. V. Stegailov, “Atomic positions and diffusion paths of H and He in the a-Ti lattice,” Phys. Solid State 55, 367–372 (2013).

    Article  Google Scholar 

  20. P. E. Vullum, M. Pitt, J. Walmsley, B. Hauback, and R. Holmestad, “Observations of nanoscopic, face centered cubic Ti and TiHx,” Appl. Phys. A: Mater. Sci. Process. 94, 787–793 (2009).

    Article  Google Scholar 

  21. G. Henkelman, B. P. Uberuaga, and H. Jonsson, “A climbing image nudged elastic band method for finding saddle points and minimum energy paths,” J. Chem. Phys. 113, 9901–9904 (2000).

    Article  Google Scholar 

  22. V. M. Katlinskii, “Some regularities and parameters of hydrogen diffusion into ten transition metals,” Izv. AN SSSR. Neorg. Mater. 14, 1667–1673 (1978).

    Google Scholar 

  23. M. Krussanova, M. Terzieva, P. Peshev, K. Petrov, M. Pezat, J. P. Manaud, and B. Dariet, “Calcium-substituted lanthanum–magnesium alloys for hydrogen storage,” Int. J. Hydrogen Energy 10, 591–594 (1985).

    Article  Google Scholar 

  24. O. P. Nazimov and L. N. Zhuravlev, “Hydrogen diffusion in titanium,” Izv. Vuzov. Tsvetn. Metall., No. 1, 160–162 (1976).

    Google Scholar 

  25. W. Kunz, H. Münzel, U. Helfrich, and H. Horneff, “Diffusionskoeffizienten für tritium in den α-phasen von titan und hafnium,” Z. Metallkd. 74, 289–296 (1983).

    Google Scholar 

  26. E. B. Boiko, A. M. Solodinin, and A. Andrievskii, “Study of hydrogen diffusion in hydrides of IV Group metals,” in Proc. Int. Symp. on the Thermodynamics of Nuclear Materials (Int. Atomic Energy Agency, Julich, 1980), p. 303.

    Google Scholar 

  27. M. M. Antonova, Properties of Metal Hydrides (Naukova Dumka, Kiev, 1975) [in Russian].

    Google Scholar 

  28. U. Kaess, G. Majer, and M. Stoll, “Hydrogen and deuterium diffusion in titanium dihydrides/dideuterides,” J. Alloys Compd. 259, 74–82 (1997).

    Article  Google Scholar 

  29. A. V. Yanilkin, “Quantum molecular dynamics simulation of hydrogen diffusion in zirconium hydride,” Phys. Solid State 56, 1879–1885 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Kuksin.

Additional information

Original Russian Text © A.S. Rokhmanenkov, A.Yu. Kuksin, A.V. Yanilkin, 2017, published in Fizika Metallov i Metallovedenie, 2017, Vol. 118, No. 1, pp. 31–41.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rokhmanenkov, A.S., Kuksin, A.Y. & Yanilkin, A.V. Simulation of hydrogen diffusion in TiH x structures. Phys. Metals Metallogr. 118, 28–38 (2017). https://doi.org/10.1134/S0031918X16100094

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X16100094

Keywords

Navigation