Skip to main content
Log in

Investigation of the microstructure and properties of Al–Si–Mg/SiC composite materials produced by solidification under pressure

  • Strength and Plasticity
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript


Composite materials based on alloys of the Al–Si–Mg system have been obtained via the introduction of 5, 10, and 15 wt % of SiC particles into the alloy melt and the solidification under a pressure. As a result of solidification under pressure, the porosity of the composite materials decreased substantially. An increase in the content of SiC particles in the composites enabled a smaller size of dendritic cells to be obtained. It has been shown by the X-ray diffraction method that, in the process of solidification under pressure, an interaction occurred between the matrix and reinforcing SiC particles. The presence of SiC particles in the structure of composites led to the acceleration of the aging process and to an increase in the peak hardness in comparison with the matrix alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. M. T. El-Hair, “Microstructure characterization and tensile properties of squeeze-cast Al–Si–Mg alloys,” Mater. Lett. 59, 894–900 (2005).

    Article  Google Scholar 

  2. O. Beffort, S. Long, C. Cayron, J. Kuebler, and A. Buffat, “Alloying effects on microstructure and mechanical properties of high volume fraction SiC-particle reinforced Al–MMCs made by squeeze casting infiltration,” Comp. Sci. Tech. 67, 737–745 (2007).

    Article  Google Scholar 

  3. M. T. El-Hair, A. Lotfy, A. Daoud, and A. M. El-Sheih, “Microstructure, thermal behavior and mechanical properties of squeeze cast SiC, ZrO2 or C reinforced ZA27 composites,” Mater. Sci. Eng., A 528, 2353–2362 (2011).

    Article  Google Scholar 

  4. A. Yu. Churyumov, A. I. Bazlov, A. N. Solonin, V. Yu. Zadorozhnyi, G. Q. Xie, S. Li, and D. V. Louzguine-Luzgin, “Structure and mechanical properties of Ni–Cu–Ti–Zr composite materials with amorphous phase,” Phys. Met. Metallogr. 114, 773–778 (2013).

    Article  Google Scholar 

  5. A. I. Bazlov, A. Yu. Churyumov, and A. A. Tsarkov, “Studies of the structure and mechanical properties of Ti43.2Zr7.8Cu40.8Ni7.2Co1 alloy containing amorphous and crystalline phases,” Phys. Met. Metallogr. 116, 684–689 (2015).

    Article  Google Scholar 

  6. M. Aydin, R. Gürler, and M. Türker, “The diffusion welding of 7075Al–3% SiC particles reinforced composites,” Phys. Met. Metallogr. 107, 206–210 (2009).

    Article  Google Scholar 

  7. V. I. Kuz’min, V. I. Lysak, S. V. Kuz’min, and V. O. Kharlamov, “Effect of heat treatment on the structure and properties of steel–aluminum composite with a diffusion barrier,” Phys. Met. Metallogr. 116, 1096–1102 (2015).

    Article  Google Scholar 

  8. V. A. Popov and V. V. Cherdyntsev, “Formation of a nanodispersed metal-matrix structure during a combined high-energy mechanical alloying of powders of aluminum-based SiC-containing alloys,” Phys. Met. Metallogr. 107, 45–52 (2009).

    Article  Google Scholar 

  9. A. V. Pozdniakov, A. Lotfy, A. Qadir, and V. S. Zolotorevskiy, Influence of B4C on the structure and coefficient of thermal expansion of the metal matrix composite material based alloy Al-5% Cu,” Phys. Met. Metallogr. 117, (in press) 2016.

  10. G. Ranganath, S. C. Sharma, M. Krishna, and M. S. Muruli, “A study of mechanical properties and fractography of ZA-27/titanium-dioxide metal matrix composite,” J. Mater. Eng. Perform. 11, 408–413 (2002).

    Article  Google Scholar 

  11. K. H. Seah, S. C. Sharma, and B. M. Grish, “Mechanical properties of as-cast and heat-treated ZA-27/graphite particulate composites,” Comp. A: Appl. Sci. Manufac. 28, 251–256 (1997).

    Article  Google Scholar 

  12. X. Fan, X. Yin, X. Cao, L. Chen, L. Cheng, and L. Zhang, “Improvement of the mechanical and thermophysical properties of C/SiC composites fabricated by liquid silicon infiltration,” Comp. Sci. Tech. 115, 21–27 (2015).

    Article  Google Scholar 

  13. P. K. Rohatgi, S. Alaraj, R. B. Thakkar, and A. Daoud, “Variation in fatigue properties of cast A359–SiC composites under total strain controlled conditions: Effects of porosity and inclusions,” Comp. A: Appl. Sci. Manufac. 38, 1829–1841 (2007).

    Article  Google Scholar 

  14. M. Kok and K. Ozdin, “Wear resistance of aluminum alloy and its composites reinforced by Al2O3 particles,” J. Mater. Proces. Techn. 183, 301–309 (2007).

    Article  Google Scholar 

  15. P. Poddar, V. C. Srivastava, P. K. De, and K. L. Sahoo, “Processing and mechanical properties of SiC reinforced cast magnesium matrix composites by stir casting process,” Mater. Sci. Eng., A 460–461, 357–364 (2007).

    Article  Google Scholar 

  16. L. J. Yang, “The effect of solidification time in squeeze casting of aluminum and zinc alloys,” J. Mater. Process Techn. 192–193, 114–120 (2007).

    Article  Google Scholar 

  17. M. Schöbel, W. Altendorfer, H. P. Degischer, S. Vaucher, T. Buslaps, M. Michiel, and M. Hofmann, “Internal stresses and voids in SiC particle reinforced aluminum composites for heat sink applications,” Comp. Sci. Techn. 71, 724–733 (2011).

    Article  Google Scholar 

  18. R. S. M. Seyed, “Processing of squeeze cast Al6061–30 vol % SiC composites and their characterization,” Mater. Design 27, 216–222 (2006).

    Article  Google Scholar 

  19. M. T. El-Khair, “Microstructure characterization and tensile properties of squeeze-cast AlSiMg alloys,” Mater. Lett. 59, 894–900 (2005).

    Article  Google Scholar 

  20. A. Daoud, “Microstructure and tensile properties of 2014 Al alloy reinforced with continuous carbon fibers manufactured by gas pressure infiltration,” Mater. Sci. Eng., A 391, 114–120 (2005).

    Article  Google Scholar 

  21. M. Kok, “Production and mechanical properties of Al2O3 particle reinforced 2024 aluminum alloy composites,” J. Mater. Process. Technol. 161, 381–387 (2005).

    Article  Google Scholar 

  22. H. Young and G. Chung, “The effect of applied pressure on particle—Dispersion characteristics and mechanical properties in melt-stirring squeeze cast SiC/Al composites,” J. Mater. Process. Technol. 55, 370–379 (1995).

    Article  Google Scholar 

  23. B. Li, B. Luo, K. He, L. Zeng, W. Fan, and Z. Bai, “Effect of aging on interface characteristics of Al–Mg–Si/SiC composites,” J. Alloys Compd. 649, 495–499 (2015).

    Article  Google Scholar 

  24. H. Liao, Y. Wu, and K. Ding, “Hardening response and precipitation behavior of Al–7% Si–0.3% Mg alloy in a pre-aging process,” Mater. Sci. Eng., A 560, 811–816 (2013).

    Article  Google Scholar 

  25. R. Dong, W. Yang, Z. Yu, P. Wu, M. Hussain, L. Jiang, and G. Wu, “Aging behavior of 6061Al matrix composite reinforced with high content SiC nanowires,” J. Alloys Compd. 649, 1037–1042 (2015).

    Article  Google Scholar 

  26. J. Banhart, C. S. T. Chang, Z. Q. Liang, N. Wanderka, M. D. H. Lay, and A. J. Hill, “Natural aging in Al–Mg–Si alloys—A process of unexpected complexity,” Adv. Eng. Mater. 12, 559–571 (2010).

    Article  Google Scholar 

  27. M. R. Gazizov, A. V. Dubina, D. A. Zhemchuzhnikova, and R. O. Kaibyshev, “Effect of equal-channel angular pressing and aging on the microstructure and mechanical properties of an Al–Cu–Mg–Si alloy,” Phys. Met. Metallogr. 116, 718–729 (2015).

    Article  Google Scholar 

  28. I. Dutta, S. M. Allen, and J. L. Hafley, “Effect of reinforcement on the aging response of cast 6061–Al2O3 particulate composite,” Metall. Trans. A 22, 2553–2563 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to E. A. Mohamed.

Additional information

Original Russian Text © E.A. Mohamed, A.Yu. Churyumov, 2016, published in Fizika Metallov i Metallovedenie, 2016, Vol. 117, No. 10, pp. 1089–1095.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, E.A., Churyumov, A.Y. Investigation of the microstructure and properties of Al–Si–Mg/SiC composite materials produced by solidification under pressure. Phys. Metals Metallogr. 117, 1054–1060 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: