Skip to main content
Log in

Production, structure, texture, and mechanical properties of severely deformed magnesium

  • Strength and Plasticity
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Methods of the severe plastic deformation (SPD) of pure magnesium at room temperature, namely, transverse extrusion and hydroextrusion in a self-destroyed shell, have been developed. The maximum true strain of the samples after the hydroextrusion was e ~ 3.2; in the course of transverse extrusion and subsequent cold rolling, a true strain of e ~ 6.0 was achieved. The structure and mechanical properties of the magnesium samples have been studied in different structural states. It has been shown that the SPD led to a decrease in the grain size d to ~2 μm; the relative elongation at fracture δ increased to ~20%. No active twinning has been revealed. The reasons for the high plasticity of magnesium after SPD according to the deformation modes suggested are discussed from the viewpoint of the hierarchy of the observed structural states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. F. Amli, Foundations of Technology of Production and Treatment of Magnetic Alloys (Metallurgiya, Moscow, 1972) [in Russian].

    Google Scholar 

  2. T. G. Langdon, “Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement,” Acta Mater. 61, 7035–7059 (2013).

    Article  Google Scholar 

  3. N. A. Kruglikov, Yu. N. Loginov, B. I. Kamenetskii, R. A. Savrai, A. V. Dolmatov, I. V. Klyukin, and A. Yu. Volkov, “Microstructure and mechanical properties of cast magnesium,” Liteishchik Rossii, No. 8, 17–21 (2013).

    Google Scholar 

  4. R. O. Kaibyshev and O. Sh. Sitdikov, “Structural changes during plastic deformation of pure magnesium,” Phys. Met. Metallogr. 73, 635–642 (1992).

    Google Scholar 

  5. R. O. Kaibyshev, O. Sh. Sitdikov, and A. M. Galiev, “Mechanisms of plastic deformation in magnesium: I. Deformation behavior of coarse-grained magnesium,” Phys. Met. Metallogr. 80, 354–360 (1995).

    Google Scholar 

  6. S. Biswas, S. S. Dhinwal, and S. Suwas, “Room-temperature equal channel angular extrusion of pure magnesium,” Acta Mater. 58, 3247–3261 (2010).

    Article  Google Scholar 

  7. S. Mu, J. J. Jonas, and G. Gottstein, “Variant selection of primary, secondary and tertiary twins in a deformed Mg alloy,” Acta Mater. 60, 2043–2053 (2012).

    Article  Google Scholar 

  8. J. Swiostek, J. Goken, D. Letzig, and K. U. Kainer, “Hydrostatic extrusion of commercial magnesium alloys at 100°C and its influence on grain refinement and mechanical properties,” Mater. Sci. Eng., A 424, 223–229 (2006).

    Article  Google Scholar 

  9. N. B. Tork, N. Pardis, and R. Ebrahimi, “Investigation on the feasibility of room temperature plastic deformation of pure magnesium by simple shear extrusion process,” Mater. Sci. Eng., A 560, 34–39 (2013).

    Article  Google Scholar 

  10. N. M. Shkatulyak, V. V. Usov, N. A. Volchok, A. A. Bryukhanov, S. V. San’kova, M. Rodman, M. Shaper, and C. Klose, “Effect of reverse bending on texture, structure, and mechanical properties of sheets of magnesium alloys with zinc and zirconium,” Phys. Met. Metallogr. 115, 609–614 (2014).

    Article  Google Scholar 

  11. S. Suwas, G. Gottstein, and R. Kumar, “Evolution of crystallographic texture during equal channel angular extrusion (ECAE) and its effects on secondary processing of magnesium,” Mater. Sci. Eng., A 471, 1–14 (2007).

    Article  Google Scholar 

  12. H. Kitahara, F. Maruno, M. Tsushida, and S. Ando, “Deformation behavior of Mg single crystals during a single ECAP pass at room temperature,” Mater. Sci. Eng., A 590, 274–280 (2014).

    Article  Google Scholar 

  13. M. Efe, W. Moscoso, K. P. Trumble, W. D. Compton, and S. Chandrasekar, “Mechanics of large strain extrusion machining and application to deformation processing of magnesium alloys,” Acta Mater. 60, 2031–2042 (2012).

    Article  Google Scholar 

  14. D. R. Nugmanov, O. Sh. Sitdikov, and M. V. Markushev, “Structure of magnesium alloy Ma14 after multistep isothermal forging and subsequent isothermal rolling,” Phys. Met. Metallogr. 116, 993–1001 (2015).

    Article  Google Scholar 

  15. Mechanical Behavior of Materials under Pressure, Ed. by H. Pugh (Van Nostrand, Amsterdam, 1970; Mir, Moscow, 1973).

  16. I. C. Choi, D. H. Lee, B. Ahn, K. Durst, M. Kawasaki, T. G. Langdon, and J. Jang, “Enhancement of strainrate sensitivity and shear yield strength of a magnesium alloy processed by high-pressure torsion,” Scr. Mater. 94, 44–47 (2015).

    Article  Google Scholar 

  17. B. I. Kamenetskii, Yu. N. Loginov, and A. Yu. Volkov, “Methods and apparatus to increase plasticity of brittle materials upon cold upsetting with lateral support,” Zagotov. Proizvod. Mashinostr., No. 9, 17–23 (2013).

    Google Scholar 

  18. B. I. Kamenetskii, A. Yu. Volkov, A. L. Sokolov, O. V. Antonova, and I. V. Klyukin, “A method for producing magnesium foil,” RF Patent 2563077 (2014).

    Google Scholar 

  19. A. Yu. Volkov and I. V. Kliukin, “Improvement of the mechanical properties of pure magnesium through cold hydrostatic extrusion and low-temperature annealing,” Mater. Sci. Eng., A 627, 56–60 (2015).

    Article  Google Scholar 

  20. N. V. Dudamell, I. Ulacia, F. Galvez, S. Yi, J. Bohlen, D. Letzig, I. Hurtado, and M. T. Perez-Prado, “Twinning and grain subdivision during dynamic deformation of a Mg AZ31 sheet alloy at room temperature,” Acta Mater. 59, 6949–6962 (2011).

    Article  Google Scholar 

  21. T. Al-Samman, K. D. Molodov, D. A. Molodov, G. Gottstein, and S. Suwas, “Softening and dynamic recrystallization in magnesium single crystals during c-axis compression,” Acta Mater. 60, 537–545 (2012).

    Article  Google Scholar 

  22. Y. Chino, K. Kimura, and M. Mabuchi, “Twinning behavior and deformation mechanisms of extruded AZ31 Mg alloy,” Mater. Sci. Eng., A 486, 481–488 (2008).

    Article  Google Scholar 

  23. K. S. Raju, V. S. Sarma, A. Kauffmann, Z. Hegedus, J. Gubicza, M. Peterlechner, J. Freudenberger, and G. Wilde, “High strength and ductile ultrafine-grained Cu–Ag alloy through bimodal grain size, dislocation density and solute distribution,” Acta Mater. 61, 228–238 (2013).

    Article  Google Scholar 

  24. O. V. Antonova, A. Yu. Volkov, B. I. Kamenetskii, D. A. Komkova, “Microstructure and mechanical properties of thin magnesium plates and foils obtained by lateral extrusion and rolling at room temperature,” Mater.Sci. Eng., A 651, 8–17 (2016).

    Article  Google Scholar 

  25. W. M. Gan, M. Y. Zheng, H. Chang, X. J. Wang, X. G. Qiao, K. Wu, B. Schwebke, and H.-G. Brokmeier, “Microstructure and tensile properties of the ECAPed pure magnesium,” J. Alloys Compd. 470, 256–262 (2009).

    Article  Google Scholar 

  26. I. R. Ahmad and D. W. Shu, “Compressive and constitutive analysis of AZ31B magnesium alloy over a wide range of strain rates,” Mater. Sci. Eng., A 592, 40–49 (2014).

    Article  Google Scholar 

  27. R. Gehrmann, M. M. Frommert, and G. Gottstein, “Texture effects on plastic deformation of magnesium,” Mater. Sci. Eng., A 395, 338–349 (2005).

    Article  Google Scholar 

  28. J. Bohlen, M. R. Nurnberg, J. W. Senn, D. Letzig, and S. R. Agnew, “The texture and anisotropy of magnesium–zinc–rare earth alloy sheets,” Acta Mater. 55, 2101–2112 (2007).

    Article  Google Scholar 

  29. H. Somekawa and T. Mukai, “Effect of grain refinement on fracture toughness in extruded pure magnesium,” Scr. Mater. 53, 1059–1064 (2005).

    Article  Google Scholar 

  30. N. Ono, R. Nowak, and S. Miura, “Effect of deformation temperature on Hall–Petch relationship registered for polycrystalline magnesium,” Mater. Lett. 58, 39–43 (2003).

    Article  Google Scholar 

  31. H. J. Choi, Y. Kim, J. H. Shin, and D. H. Bae, “Deformation behavior of magnesium in the grain size spectrum from nanoto micrometer,” Mater. Sci. Eng., A 527, 1565–1570 (2010).

    Article  Google Scholar 

  32. J. A. Sharon, Y. Zhang, F. Mompiou, M. Legros, and K. J. Hemker, “Discerning size effect strengthening in ultrafine-grained Mg thin films,” Scr. Mater. 75, 10–13 (2014).

    Article  Google Scholar 

  33. Y. Wang and H. Choo, “Influence of texture on Hall–Petch relationships in an Mg alloy,” Acta Mater. 81, 83–97 (2014).

    Article  Google Scholar 

  34. A. Yamashita, Z. Horita, and T. G. Langdon, “Improving the mechanical properties of magnesium and magnesium alloy through severe plastic deformation,” Mater. Sci. Eng., A 300, 142–147 (2001).

    Article  Google Scholar 

  35. D. Sarker, J. Friedman, and D. L. Chen, “Influence of pre-deformation and subsequent annealing on strain hardening and anisotropy of AM30 magnesium alloy,” J. Alloys Compd. 611, 341–350 (2014).

    Article  Google Scholar 

  36. R. O. Kaibyshev, O. Sh. Sitdikov, and A. M. Galiev, “Mechanisms of plastic deformation of magnesium. II. Analysis of activation processes,” Phys. Met. Metallogr. 80, 470–476 (1995).

    Google Scholar 

  37. G. C. Kaschner, C. N. Tome, R. J. McCabe, A. Misra, S. C. Vogel, and D. W. Brown, “Exploring the dislocation/twin interaction in zirconium,” Mater. Sci. Eng., A 463, 122–127 (2007).

    Article  Google Scholar 

  38. H. Fan, S. Aubry, A. Arsenlis, and J. A. El-Awady, “Orientation influence on grain size effect in ultrafinegrained magnesium,” Scr. Mater. 97, 25–28 (2015).

    Article  Google Scholar 

  39. Z. Keshavarz and M. R. Barnett, “EBSD analysis of deformation modes in Mg–3Al–1Zn,” Scr. Mater. 55, 915–918 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Volkov.

Additional information

Original Russian Text © A.Yu. Volkov, O.V. Antonova, B.I. Kamenetskii, I.V. Klyukin, D.A. Komkova, B.D. Antonov, 2016, published in Fizika Metallov i Metallovedenie, 2016, Vol. 117, No. 5, pp. 538–548.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkov, A.Y., Antonova, O.V., Kamenetskii, B.I. et al. Production, structure, texture, and mechanical properties of severely deformed magnesium. Phys. Metals Metallogr. 117, 518–528 (2016). https://doi.org/10.1134/S0031918X16050161

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X16050161

Keywords

Navigation