Skip to main content
Log in

Anisotropy of the U–Mo alloy: Molecular-dynamics study

  • Structure, Phase Transformations, and Diffusion
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Metastable structures of homogeneous U–Mo phases formed in the course of alloy solidification have been studied by the method of atomistic simulation. It has been shown that, at low molybdenum concentrations, a phase with a tetragonal lattice is more stable. This structure can be considered as close to a body-centered cubic structure with the central atom slightly displaced from the center of the unit cell. The calculation results are in agreement with the experimental data and confirm the anisotropy of the alloy structure. With increasing molybdenum concentration, a gradual transition to a cubic structure occurs. However, this transition occurs due to the accumulation of centers of the stabilization of the cubic structure represented by molybdenum atoms, rather than via changes in the uranium-atom positions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Vatulin, A. V. Morozov, V. B. Suprun, Yu. I. Petrov, and Yu. I. Trifonov, “Radiation resistance of high-density uranium–molybdenum dispersion fuel for nuclear research reactors,” At. Energ. 100, 37–46 (2006).

    Article  Google Scholar 

  2. V. Sinha, P. Hegde, G. Prasad, G. Dey, and H. Kamath, “Phase transformation of metastable cubic γ-phase in UMo alloys,” J. Alloys Compd. 506, 253–262 (2010).

    Article  Google Scholar 

  3. Physical Material Science, Ed. by V. A. Kalin (Mosk. Inzh.-Fiz. Inst., Moscow, 2008), Vol. 6, Ch. 2 [in Russian].

  4. V. Baranov, V. Nechaev, B. Produvalov, and D. Shornikov, “Interaction of uranium–molybdenum fuel with an aluminum matrix with deep burnup,” At. Energ. 108, 349–356 (2010).

    Article  Google Scholar 

  5. S. T. Konobeevskii, N. F. Pravdyuk, K. P. Dubrovin, B. M. Levitskii, L. D. Panteleev, and V. M. Golianov, “An investigation of structural changes caused by neutron irradiation of a uranium molybdenum alloy,” J. Nucl. Mater. Part B. Reactor Technol. 9, 75–89 (1959).

    Article  Google Scholar 

  6. B. W. Howlett, “A study of the shear transformations from the gamma-phase in uranium–molybdenum alloys containing 6.0–12.5 at % molybdenum,” J. Nucl. Mater. 35, 278–292 (1970).

    Article  Google Scholar 

  7. J. W. Christian, Atomic Energy Research Estab. Rap. (AEREM/R 1811), 1955.

    Google Scholar 

  8. K. Tangri and G. I. Williams, “Metastable phases in the uranium molybdenum system and their origin,” J. Nucl. Mater. 4, 226–233 (1961).

    Article  Google Scholar 

  9. J. R. Fernandez and M. I. Pascuet, “On the accurate description of uranium metallic phases: A MEAM interatomic potential approach,” Modeling Simul. Mater. Sci. Eng. 22, 055019 (2014).

    Article  Google Scholar 

  10. M. Freyss, T. Petit, and J.-P. Crocombette, “Point defects in uranium dioxide: Ab initio pseudopotential approach in the generalized gradient approximation,” J. Nucl. Mater. 347, 44–51 (2005).

    Article  Google Scholar 

  11. R. Hood, L. Yang, and J. Moriarty, “Quantum molecular dynamics simulations of uranium at high pressure and temperature,” Phys. Rev. B: Condens. Matter Mater. Phys. 78, 094119 (2008).

    Article  Google Scholar 

  12. D. E. Smirnova, S. V. Starikov, and V. V. Stegailov, “Interatomic potential for uranium in a wide range of pressures and temperatures,” J. Phys.: Condens. Matter 24, 015702 (2012).

    Google Scholar 

  13. I. Tkach, N.-T. H. Kim-Ngan, S. Maskov, M. Dzevenko, L. Havela, A. Warren, C. Stitt, and T. Scott, “Characterization of cubic-phase uranium molybdenum alloys synthesized by ultrafast cooling,” J. Alloys Compd. 534, 101–109 (2012).

    Article  Google Scholar 

  14. N.-T. H. Kim-Ngan, I. Tkach, S. Mashkova, L. Havela, A. Warren, and T. Scott, “Cubic γ-phase U-Mo alloys synthesized by splat-cooling,” Adv. Nat. Sci.: Nanosci. Nanotechnol. 4, 035006 (2013).

    Google Scholar 

  15. V. M. Chernov, M. V. Leonteva-Smirnova, M. M. Potapenko, N. I. Budylkin, Yu. N. Devyatko, A. G. Ioltoukhovskiy, E. G. Mironova, A. K. Shikov, A. B. Sivak, and G. N. Yermolaev, “Structural materials for fusion power reactors—The RF R&D activities,” Nucl. Fusion 47, 839–848 (2007).

    Article  Google Scholar 

  16. D. K. Belashchenko, D. E. Smirnova, and O. I. Ostrovskii, “Molecular-dynamic simulation of the thermophysical properties of liquid uranium,” High Temper. 48, 363–375 (2010).

    Article  Google Scholar 

  17. G. E. Norman, S. V. Starikov, V. V. Stegailov, V. E. Fortov, I. Skobelev, T. Pikuz, A. Faenov, S. Tamotsu, Y. Kato, M. Ishino, M. Tanaka, N. Hasegawa, M. Nishikino, T. Ohba, T. Kaihori, Y. Ochi, T. Imazono, Y. Fukuda, M. Kando, and T. Kawachi, “Nanomodification of gold surface by picosecond soft X-ray laser pulse,” J. Appl. Phys. 112, 013104 (2012).

    Article  Google Scholar 

  18. V. V. Dremov, F. A. Sapozhnikov, G. V. Ionov, A. V. Karavaev, M. A. Vorobyova, and B. W. Chung, “MD simulations of phase stability of PuGa alloys: Effects of primary radiation defects and helium bubbles,” J. Nucl. Mater. 440, 278–282 (2013).

    Article  Google Scholar 

  19. V. A. Pechenkin, V. L. Molodtsov, V. A. Ryabov, and D. Terentyev, “On the radiation-induced segregation: Contribution of interstitial mechanism in Fe–Cr alloys,” J. Nucl. Mater. 433, 372–377 (2013).

    Article  Google Scholar 

  20. D. K. Belashchenko, “Computer simulation of liquid metals,” Phys.-Usp. 56, 1176–1216 (2013).

    Article  Google Scholar 

  21. G. E. Norman and V. V. Stegailov, “Stochastic theory of the classical molecular dynamics method,” Mathem. Models Comp. Simul. 5, 305–333 (2013).

    Article  Google Scholar 

  22. E. A. Korznikova, Yu. A. Baimova, A. A. Kistanov, S. V. Dmitriev, and A. V. Korznikov, “Effect of small perturbations on the evolution of polycrystalline structure during plastic deformation,” Phys. Met. Metallogr. 115, 918–925 (2014).

    Article  Google Scholar 

  23. A. V. Yanilkin, V. S. Krasnikov, A. Yu. Kuksin, and A. E. Mayer, “Dynamics and kinetics of dislocations in Al and Al–Cu alloy under dynamic loading,” Int. J. Plasticity 55, 94–107 (2014).

    Article  Google Scholar 

  24. S. V. Starikov, “Atomistic simulation of the process of defect formation in uranium dioxide during fission fragments flying through,” High Temper. 53, 55–61 (2015).

    Article  Google Scholar 

  25. D. E. Smirnova, A. Yu. Kuksin, S. V. Starikov, and V. V. Stegailov, “Atomistic modeling of the self-diffusion in γ-U and γ-U–Mo,” Phys. Met. Metallogr. 116, 445–455 (2015).

    Article  Google Scholar 

  26. D. E. Smirnova, A. Yu. Kuksin, and S. V. Starikov, “Investigation of point defects diffusion in bcc uranium and U–Mo alloys,” J. Nucl. Mater. 458, 304–311 (2015).

    Article  Google Scholar 

  27. http://ihed.ras.ru/norman/wiki/index.php/Potentials

  28. S. J. Plimpton, “Fast parallel algorithms for shortrange molecular dynamics,” J. Comput. Phys. 117, 1–19 (1995).

    Article  Google Scholar 

  29. Yu. V. Vamberskiy, A. L. Udovskiy, and O. S. Ivanov, “Experimental determination and calculation of excess thermodynamic functions of molybdenum solid solutions in gamma-uranium,” J. Nucl. Mater. 46, 192–206 (1973).

    Article  Google Scholar 

  30. A. Landa, P. Soderlind, and P. E. A. Turchi, “Densityfunctional study of bcc U–Mo, Np–Mo, Pu–Mo, and Am–Mo alloys,” J. Nucl. Mater. 434, 31–37 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. N. Kolotova.

Additional information

Original Russian Text © L.N. Kolotova, S.V. Starikov, 2016, published in Fizika Metallov i Metallovedenie, 2016, Vol. 117, No. 5, pp. 506–512.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolotova, L.N., Starikov, S.V. Anisotropy of the U–Mo alloy: Molecular-dynamics study. Phys. Metals Metallogr. 117, 487–493 (2016). https://doi.org/10.1134/S0031918X16050100

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X16050100

Keywords

Navigation