Skip to main content
Log in

Anisotropy of magnetocaloric effects in easy-axis antiferromagnets

  • Electrical and Magnetic Properties
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Magnetocaloric effects (MCEs) in two-sublattice anisotropic antiferromagnets with single-ion anisotropy of easy-axis type have been investigated upon orientation of a magnetic field both along and transversely to the easy axis of magnetization. It has been shown that MCEs that arise in a longitudinal magnetic field in the paramagnetic range above the Néel temperature T N are of a normal character, whereas in low fields in the magnetically ordered range below T N, they are anomalous: isothermal magnetization increases magnetic anisotropy and adiabatic magnetization reduces the temperature of the antiferromagnet. Upon the magnetization of anisotropic antiferromagnets perpendicular to the easy axis of magnetization above the Néel point T N, we observe normal (direct) MCEs that are weaker than in longitudinal fields and decrease with the relative growth of the single-ion anisotropy parameter D > 0. In low fields, upon magnetization by transverse fields below T N, as in the case of longitudinal magnetization, anomalous (inverse) MCEs arise, but they are several orders of magnitude weaker than analogous effects in longitudinal fields and disappear completely upon passage to the limiting case of isothermal antiferromagnet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. P. Belov and S. A. Nikitin, “Theory of the anomalies of physical properties of ferrimagnets in the vicinity of the magnetic compensation point,” Sov. Phys. (JETP) 31, 505–508 (1970).

    Google Scholar 

  2. K. P. Belov and S. A. Nikitin, “Effects of paraprocess in rare-earth iron garnets,” Izv. AN SSSR. Ser. Fiz. 34, 957–964 (1970).

    Google Scholar 

  3. A. S. Andreenko, K. P. Belov, S. A. Nikitin, and A. M. Tishin, “Magnetocaloric effects in rare-earth magnetic materials,” Sov. Phys. Usp. 32, 649–664 (1989).

    Article  Google Scholar 

  4. A. E. Clark and E. Callen, “Néel ferrimagnets in large magnetic fields,” J. Appl. Phys. 19, 5972–5982 (1968).

    Article  Google Scholar 

  5. K. A. Jr. Gschneider, V. K. Pecharsky, and A. O. Tsokol, “Recent developments in magnetocaloric materials,” Rep. Prog. Phys. 68, 1479–1539 (2005).

    Article  Google Scholar 

  6. N. A. de Oliveira and P. J. von Ranke, “Theoretical aspects of the magnetocaloric effect,” Phys. Rep. 489, 89–159 (2010).

    Article  Google Scholar 

  7. P. J. von Ranke, N. A. de Oliveira, B. P. Alho, E. J. R. Plaza, V. S. R. de Sousa, L. Caron, and M. S. Reis, “Understanding the inverse magnetocaloric effect in antiferroand ferrimagnetic arrangements,” J. Phys: Condens. Matter 21, 056004 (2009).

    Google Scholar 

  8. P. J. von Ranke, B. P. Alho, E. P. Nobrega, and N. A. de Oliveira, “Understanding the inverse magnetocaloric effect through a simple theoretical model,” Physica A 404, 3045–3047 (2009).

    Article  Google Scholar 

  9. J. H. van Vleck, “On the theory of antiferromagnetism,” J. Chem. Phys. 9, 85–90 (1941).

    Article  Google Scholar 

  10. L. Néel, “Properties magnetiques des ferrites. Ferrimagnetisme et antiferromagnetisme,” Ann. Phys. 3, 137–198 (1948).

    Google Scholar 

  11. F. A. Kassan-Ogly, E. E. Kokorina, and M. V. Medvedev, “Specific features of magnetocaloric effect in isotropic antiferromagnets,” Phys. Met. Metallogr. 115, 319–325 (2014).

    Article  Google Scholar 

  12. E. Z. Valiev, “Entropy and magnetocaloric effect in ferromagnets and antiferromagnets,” Phys. Met. Metallogr. 104, 8–12 (2007).

    Article  Google Scholar 

  13. V. K. Pecharsky, K. A. Gschneider, A. O. Pecharsky, and A. M. Tishin, “Thermodynamics of the magnetocaloric effect,” Phys. Rev. B: Condens. Matter Mater. Phys. 64, 144406 (2001).

    Article  Google Scholar 

  14. J. Smart, Effective Field Theories of Magnetism (Sounders, Philadelphia, 1966; Mir, Moscow, 1968 ).

    Google Scholar 

  15. Ch. Kittel, Introduction to Solid State Physics (Wiley, New York, 1953; Nauka, Moscow, 1978).

    Google Scholar 

  16. Yahnke–Emde–Lesch: Tafeln höherer Funktionen (Tables of Higher Functions) (Teubner, Stuttgart, 1968; Nauka, Moscow, 1977).

  17. T. Samanta, I. Das, and S. Banerjee, “Giant magnetocaloric effect in antiferromagnetic ErRu2Si2,” Appl. Phys. Lett. 91, 152506 (2007).

    Article  Google Scholar 

  18. L. Li, K. Nishimura, and H. Yamane, “Giant reversible magnetocaloric effect in antiferromagnetic GdCo2B2 compound,” Appl. Phys. Lett. 94, 102509 (2009).

    Article  Google Scholar 

  19. Z. J. Mo, J. Shen, L. Q. Yan, X. Q. Gao, L. C. Wang, C. C. Tang, J. F. Wu, J. R. Sun, and B. G. Shen, “Magnetic properties and magnetocaloric effect in the RCu2Si2 and RCu2Ge. (R = Ho, Er) compounds,” J. Appl. Phys. 115, 073905 (2014).

    Article  Google Scholar 

  20. B. J. Korte, V. K. Pecharsky, and K. A. Gschneider, “The correlation of the magnetic properties and the magnetocaloric effect in Gd1–x ErxNiAl alloys,” J. Appl. Phys. 84, 5677–5685 (1998).

    Article  Google Scholar 

  21. S. A. L. Lima, A. M. Gomes, and P. A. Sharma, “Anisotropic magnetocaloric effect and magnetic order in antiferromagnetic Gd2InGe2,” World J. Cond. Mat. Phys. 3, 180–183 (2013).

    Google Scholar 

  22. N. S. Akulov and L. V. Kirensky, “Uber einen neuen magnetokalorischen Effekt,” J. Phys. USSR 3, 31–34 (1940).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F. A. Kassan-Ogly or M. V. Medvedev.

Additional information

Original Russian Text © F.A. Kassan-Ogly, E.E. Kokorina, M.V. Medvedev, 2016, published in Fizika Metallov i Metallovedenie, 2016, Vol. 117, No. 5, pp. 451–467.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kassan-Ogly, F.A., Kokorina, E.E. & Medvedev, M.V. Anisotropy of magnetocaloric effects in easy-axis antiferromagnets. Phys. Metals Metallogr. 117, 435–450 (2016). https://doi.org/10.1134/S0031918X16050070

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X16050070

Keywords

Navigation