Skip to main content
Log in

Effect of compaction method on the structure and properties of bulk Cu + Cr3C2 composites

  • Strength and Plasticity
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Cu + Cr3C2 composites have been produced using the mechanical alloying of the elemental components, followed by severe plastic deformation by torsion, magnetic-pulse pressing, and electric-pulse plasma sintering. The composites are studied using X-ray diffraction and light and electron microscopy, as well as measurements of the hardness, density, and electric conductivity. Magnetic-pulse pressing at a temperature of 500°C makes it possible to produce volume nanocomposites with a homogeneous distribution of dispersed carbides over the copper matrix, which has a density of 96%, a Vickers microhardness of 4.6 GPa, a Rockwell hardness of 69 HRA, and an electric conductivity of 19% IACS units. Using electric-pulse plasma sintering at a temperature of 700°C, composites with the nanostructured copper matrix, which contains carbide inclusions and consists of domains surrounded by a layer of nearly pure copper, have been produced. These composites have a density of 88%, a Vickers microhardness of 4.0 GPa, a Rockwell hardness of 58 HRA, and electric conductivity of 26% IACS units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Suryanarayana and Al-Aqeeli Nasser, “Mechanically alloyed nanocomposites,” Prog. Mater. Sci. 58, 383–502 (2013).

    Article  Google Scholar 

  2. G. S. Upadhyaya, Powder Metallurgy Technology (Cambridge Int. Sci., Cambridge, 2002).

    Google Scholar 

  3. B. D. Long, M. Umemoto, Y. Todaka, R. Othman, and H. Zuhailawati, “Fabrication of high strength Cu–NbC composite conductor by high pressure torsion,” Mater. Sci. Eng., A 528, 1750–1756 (2011).

    Article  Google Scholar 

  4. G. H. Lee, Ch. K. Rhee, M. K. Lee, Wh. Wh. Kim, and V. V. Ivanov, “Nanostructures and mechanical properties of copper compacts prepared by magnetic pulsed compaction method,” Mater. Sci. Eng., A 375–377, 604–608 (2004).

    Article  Google Scholar 

  5. Zh.-H. Zhang, F.-Ch. Wang, L. Wang, and Sh.-K. Li, “Ultrafine–grained copper prepared by spark plasma sintering process,” Mater. Sci. Eng., A 476, 201–205 (2008).

    Article  Google Scholar 

  6. M. A. Eremina, S. F. Lomaeva, E. P. Elsukov, L. E. Bodrova, E. Yu. Goida, and E. A. Pastukhov, “Copper–chromium carbide composites produced by mechanical activation of initial components in the solid and liquid states,” Khim. Fiz. Mezosk 15, 262–269 (2013).

    Google Scholar 

  7. M. A. Eremina, S. F. Lomaeva, and E. P. Elsukov, “Formation of chromium carbides in copper matrix during mechanical alloying in carbon-containing media,” Phys. Met. Metallogr. 114, 928–934 (2013).

    Article  Google Scholar 

  8. M. Lopez, C. Camurri, V. Vergara, and J. A. Jimenez, “Electron microscopy characterization of mechanically alloyed and hot consolidated Cr–Cr3C2 particles,” Rev. Metal. (Madrid) 41, 308–312 (2005).

    Article  Google Scholar 

  9. H. Wen, R. K. Islamgaliev, K. M. Nesterov, R. Z. Valiev, and E. J. Lavernia, “Dynamic balance between grain refinement and grain growth during high-pressure torsion of Cu powders,” Philos. Mag. Lett. 93, 481–489 (2013).

    Article  Google Scholar 

  10. V. Mironov, “Magnetic pulse pressing of powders and shaping of powder products,” Proc. Int. Conf. PM-94 “Sintering Consolidation”, Paris, 1994, pp. 2157–2160.

    Google Scholar 

  11. E. A. Olevsky, A. A. Bokov, G. Sh. Boltachev, N. B. Volkov, S. V. Zayats, A. M. Ilyina, A. A. Nozdrin, and S. N. Paranin, “Modeling and optimization of uniaxial magnetic pulse compaction of nanopowders,” Acta Mech. 224, 3177–3195 (2013).

    Article  Google Scholar 

  12. V. Ivanov, Y. A. Kotov, and O. H. Samatov, “Synthesis and dynamic compaction of ceramic nano powders by techniques based on electric pulsed power,” Nanostr. Mater. 6, 287–290 (1995).

    Article  Google Scholar 

  13. Z. N. Zhang, F. C. Wang, S. K. Lee, Y. Liu, J. W. Cheng, and Y. Liang, “Microstructure characteristic, mechanical properties and sintering mechanism of nanocrystalline copper obtained by SPS process,” Mater. Sci. Eng., A 523, 134–138 (2009).

    Article  Google Scholar 

  14. D. Briggs and M. P. Seah, Practical Surface Analysis (Wiley, Chichester, UK, 1990), Vol. 1.

    Google Scholar 

  15. V. I. Povstugar, A. A. Shakov, S. S. Mikhailova, E. V. Voronina, and E. P. Elsukov, “Resolution of complex X-ray photoelectron spectra using fast discrete Fourier transformation with improved convergence procedure: Assessment of the usability of the procedure,” J. Anal. Chem. 53, 697–700 (1998).

    Google Scholar 

  16. G. Beamson and D. Briggs, High Resolution XPS of Organic Polymers, The Scienta ESCA300 Database (Wiley, Chichester, 1992).

    Google Scholar 

  17. E. V. Shelekhov and T. A. Sviridova, “Programs for X-ray analysis of polycrystals,” Mater. Sci. Heat Treat. 42, 309–313 (2000).

    Article  Google Scholar 

  18. R. Z. Valiev and I. V. Aleksandrov, Nanostructural Materials Obtained by Severe Plastic Deformation (Logos, Moscow, 2000), p. 57 [in Russian].

    Google Scholar 

  19. H. Jiang, Y. Th. Zhu, D. P. Butt, I. V. Alexandrov, and T. C. Lowe, “Microstructural evolution, microhardness and thermal stability of HPT-processed Cu,” Mater. Sci. Eng., A 290, 128–138 (2000).

    Article  Google Scholar 

  20. J. M. Tao, X. K. Zhu, R. O. Scattergood, and C. C. Koch, “The thermal stability of high-energy ballmilled nanostructured Cu,” Mater. Des. 50, 22–26 (2013).

    Article  Google Scholar 

  21. X. Sauvage and R. Pippan, “Nanoscaled structure of a Cu–Fe composite processed by high-pressure torsion,” Mater. Sci. Eng., A 410–411, 345–347 (2005).

    Article  Google Scholar 

  22. P. Jenei, E. Y. Yoon, J. Gubicza, H. S. Kim, J. L. Lábár, and T. Ungár, “Microstructure and hardness of copper–carbon nanotube composites consolidated by high pressure torsion,” Mater. Sci. Eng., A 528, 4690–4695 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Eremina.

Additional information

Original Russian Text © M.A. Eremina, S.F. Lomaeva, S.N. Paranin, S.L. Demakov, E.P. Elsukov, 2016, published in Fizika Metallov i Metallovedenie, 2016, Vol. 117, No. 5, pp. 530–537.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eremina, M.A., Lomaeva, S.F., Paranin, S.N. et al. Effect of compaction method on the structure and properties of bulk Cu + Cr3C2 composites. Phys. Metals Metallogr. 117, 510–517 (2016). https://doi.org/10.1134/S0031918X16050057

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X16050057

Keywords

Navigation