Skip to main content
Log in

Effect of the nanocrystalline state and electrical resistance of Fe and Fe75Si25 powders produced by the method of high-energy ball milling on the frequency dispersion of microwave material parameters

  • Electrical and Magnetic Properties
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The influence of the nanocrystalline state of Fe and Fe75Si25 particles and their electrical resistance on the microwave properties of composite materials that contain these particles has been investigated experimentally. The main factors that determine changes in the frequency dispersion of the permeability are the skin effect and the decrease in the internal field of anisotropy of the particles. In the case of Fe particles, the role of skin effect of prevails.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. P. Elsukov, K. N. Rozanov, S. F. Lomaeva, A. V. Osipov, D. A. Petrov, D. V. Surnin, A. A. Chulkina, and A. S. Shuravin, “Structure, magnetostatic properties, and microwave characteristics of mechanoactivated nanocrystalline Fe and Fe–-Si powders,” Phys. Met. Metallogr. 104, 248–256 (2007).

    Article  Google Scholar 

  2. R. Z. Gong, X. Wang, W. M. Cheng, and X. Shen, “Annealing effect on the magnetic properties of Fe–Co–Zr alloy flakes,” Mater. Lett. 62, 266–268 (2008).

    Article  Google Scholar 

  3. X. Ni and J. G. Li, “Microstructures induced microwave resonance peak shift of Co/Al2O3 nanocomposites prepared by ball milling,” J. Alloys Compd. 558, 62–67 (2013).

    Article  Google Scholar 

  4. M. Han, D. Liang, K. N. Rozanov, and L. Deng, “Microwave permeability and Mössbauer spectra of flaky Fe–Si–Al particles,” IEEE Trans. Magn. 49, 982–985 (2013).

    Article  Google Scholar 

  5. M. G. Han, D. F. Liang, J. L. Xie, and L. J. Deng, “Effect of attrition time on the microwave permeability of magnetic Fe–Si–Al flakes,” J. Appl. Phys. 111, 07A317 (2012).

    Google Scholar 

  6. Z. Raolison, C. Lefevre, J. Neige, A.-L. AdenotEngelvin, J. M. Greneche, N. Vukadinovic, and G. Pourroy, “Structural and microwave properties of silica-coated NiFeMo flakes/polymer composites,” Mater. Res. Express 2, 026101 (2015).

    Article  Google Scholar 

  7. M. Abshinova, “Factors affecting magnetic properties of Fe–Si–Al and Ni–Fe–Mo alloys,” Proc. Eng. 76, 35–44 (2014).

    Article  Google Scholar 

  8. K. N. Rozanov, A. V. Osipov, D. A. Petrov, S. N. Starostenko, and E. P. Yelsukov, “The effect of shape distribution of inclusions on the frequency dependence of permeability in composites,” J. Magn. Magn. Mater. 321, 738–741 (2009).

    Article  Google Scholar 

  9. R. B. Yang, W. F. Liang, C. C. Chen, and S. T. Choi, “Electromagnetic and microwave absorbing properties of raw and milled FeSiCr particles,” J. Appl. Phys. 115, 17B536 (2014).

    Article  Google Scholar 

  10. X. Li, Y. X. Duan, Y. Zhao, and L. Zhu, “Effects of heat treatment on magnetic properties of Co–Fe-plated hollow ceramic microspheres,” Prog. Nat. Sci.: Mater. Int. 21, 392–400 (2011).

    Article  Google Scholar 

  11. E. Yu. Gerashchenkova, E. A. Samodelkin, P. A. Kuznetsov, M. S. Pervukhina, and N. V. Yakovleva, “Investigation of the mechanism of ultrahigh-speed universal disintegrator-activator treatment for production of soft magnetic powder materials based on an amorphous tape of alloy of the Fe–Cu–Nb–Si–B system,” Inorg. Mater.: Appl. Res. 4, 518–526 (2013).

    Article  Google Scholar 

  12. J. Q. Wei, Z. Q. Zhang, B. C. Wang, T. Wang, and F. S. Li, “Microwave reflection characteristics of surface-modified Fe50Ni50 fine particle composites,” J. Appl. Phys. 108, 123908 (2010).

    Article  Google Scholar 

  13. Z. Zhang, J. Wei, W. Yang, L. Qiao, T. Wang, and F. Li, “Effect of shape of sendust particles on their electromagnetic properties within 0.1–18 GHz range,” Phys. B: Condens. Matter 406, 3896–3900 (2011).

    Article  Google Scholar 

  14. E. P. Elsukov, K. N. Rozanov, S. F. Lomaeva, A. V. Osipov, D. A. Petrov, A. S. Shuravin, A. A. Chulkina, G. N. Konygin, and A. L. Ul’yanov, “Microwave absorbing properties of Fe powders milled in various media,” Phys. Met. Metallogr. 106, 465–471 (2008).

    Article  Google Scholar 

  15. E. P. Elsukov, G. A. Dorofeev, A. I. Ul’yanov, A. V. Zagainov, and A. N. Maratkanova, “Mössbauer spectroscopy and magnetic studies of nanocrystalline iron produced ny milling in an argon atmosphere,” Phys. Met. Metallogr. 91, 258–265 (2001).

    Google Scholar 

  16. V. M. Fomin, E. P. Elsukov, D. A. Vytovtov, and G. A. Dorofeev, “Evolution of the structure of nanocrystalline Fe and Fe75Si25 alloy upon heat treatment,” Phys. Met. Metallogr. 97, 282–289 (2004).

    Google Scholar 

  17. E. P. Elsukov, V. A. Barinov, V. R. Galakhov, E. E. Yurchikov, and A. E. Ermakov, “Order–disorder transition in Fe3Si alloys during mechanical milling,” Fiz. Met. Metalloved. 55, 337–340 (1983).

    Google Scholar 

  18. F. W. Glaser and W. Iwanik, “Study of the Fe–Si order–disorder transformation,” Trans. AIME 206, 1290–1295 (1956).

    Google Scholar 

  19. A. M. Nicolson and G. F. Ross, “Measurement of the intrinsic properties of materials by time-domain techniques,” IEEE Trans. Instr. Meas. 19, 377–382 (1970).

    Article  Google Scholar 

  20. W. R. Weir, “Automatic measurement of complex dielectric constant and permeability at microwave frequencies,” Proc. IEEE 62, 33–36 (1974).

    Article  Google Scholar 

  21. T. A. Carlson, Photoelectron and Auger-Spectroscopy (Plenum, New York, 1975; Mashinostroenie, Leningrad, 1981).

    Google Scholar 

  22. A. I. Gusev, Nanomaterials, Nanostructures, Nanotechnologies (FIZMALIT, Moscow, 2005) [in Russian].

    Google Scholar 

  23. A. N. Lagarkov and K. N. Rozanov, “High-frequency behavior of magnetic composites,” J. Magn. Magn. Mater. 321, 2082–2092 (2009).

    Article  Google Scholar 

  24. C. W. Ji, S. H. Kim, I. Kim, J. Kim, H. K. Ki, and M. Yamaguchi, “Effects of post-annealing on the magnetic properties of FeCoBN thin film,” IEEE Trans. Magn. 41, 3277–3279 (2005).

    Article  Google Scholar 

  25. Z. J. Zhao, F. Bendjaballah, X. L. Yang, and D. P. Yang, “Longitudinally driven magneto-impedance effect in annealed Fe–based nanocrystalline powder materials,” J. Magn. Mag. Mater 246, 62–66 (2002).

    Article  Google Scholar 

  26. K. N. Rozanov and M. Y. Koledintseva, “Analytical representations for frequency dependences of microwave permeability,” Proc. 2012 IEEE Symp. on Electromagn. Compat., Pittsburgh, USA, 2012, pp. 422–427.

    Chapter  Google Scholar 

  27. M. Han, K. N. Rozanov, P. A. Zezyulina, and Y. H. Wu, “Effects of eddy current and dispersion of magnetic anisotropy on the high-frequency permeability of Febased nanocomposites,” J. Magn. Mag. Mater. 383, 114–119 (2015).

    Article  Google Scholar 

  28. J. L. Snoek, “Dispersion and absorption in magnetic ferrites at frequencies above one Mc/s,” Physica 14, 207–217 (1947).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. A. Petrov or K. A. Yazovskikh.

Additional information

Original Russian Text © K.N. Rozanov, D.A. Petrov, E.P. Yelsukov, A.V. Protasov, A.S. Yurovskikh, K.A. Yazovskikh, S.F. Lomayeva, 2016, published in Fizika Metallov i Metallovedenie, 2016, Vol. 117, No. 6, pp. 562–570.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rozanov, K.N., Petrov, D.A., Yelsukov, E.P. et al. Effect of the nanocrystalline state and electrical resistance of Fe and Fe75Si25 powders produced by the method of high-energy ball milling on the frequency dispersion of microwave material parameters. Phys. Metals Metallogr. 117, 540–549 (2016). https://doi.org/10.1134/S0031918X16040116

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X16040116

Keywords

Navigation