Skip to main content
Log in

The formation, structure, and properties of the Au–Co alloys produced by severe plastic deformation under pressure

  • Structure, Phase Transformations, and Diffusion
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The mechanical alloying of Au–Co mixtures, which are systems with high positive mixing enthalpy, is studied following high-pressure torsion deformation at room and cryogenic temperatures. X-ray diffractometry in synchrotron radiation and scanning microscopy are used to investigate the sequence of structural changes in the course of deforming the mixtures up to the end state of the fcc substitutional solid solution based on gold. The mechanical properties of the alloys are measured both during mixture processing and after mechanical alloying. Microfractographic studies are performed. Factors that facilitate the solubility of Co in Au, namely, increased processing pressure, cobalt concentration in a charge mixture, true strain, and temperature decreased to cryogenic level have been identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Suryanarayana, “Mechanical alloying and milling,” Prog. Mater. Sci. 46, 1–184 (2001).

    Article  Google Scholar 

  2. P. S. Gilman and J. S. Benjamin, “Mechanical alloying,” Ann. Rev. Mater. Sci. 13, 279–361 (1983).

    Article  Google Scholar 

  3. V. A. Teplov, V. P. Pilugin, V. S. Gaviko, and E. G. Chernyshev, “Non-equilibrium solid solution and nanocrystal structure of Fe–Cu alloy after plastic deformation under pressure,” Philos. Mag. 68, 877–881 (1993).

    Article  Google Scholar 

  4. E. G. Chernyshev, V. P. Pilyugin, A. M. Patselov, V. V. Serikov, and N. M. Kleinerman, “Study of the phase composition and homogeneity of Fe–Cu alloys prepared by mechanoactivation under pressure,” Phys. Met. Metallogr. 92, 179–184 (2001).

    Google Scholar 

  5. A. V. Dobromyslov and R. V. Churbaev, “Synthesis of nanocrystalline and amorphous alloys from elementary powders by intensive plastic deformation under high pressure,” Int. J. Modern Phys. 6, 722–729 (2010).

    Article  Google Scholar 

  6. Y. F. Sun, H. Fujii, T. Nakamura, N. Tsuji, D. Todaka, and M. Umemoto, “Critical strain for mechanical alloying of Cu–Ag, Cu–Ni and Cu–Zr by high-pressure torsion,” Scr. Mater. 65, 489–492 (2011).

    Article  Google Scholar 

  7. A. M. Glezer, “On the nature of ultrahigh plastic (megaplastic) strain,” Bull. Russ. Acad. Sci.: Phys. 71, 1722–1730 (2007).

    Article  Google Scholar 

  8. Zh. Xinming, H. R. Khan, and Ch. J. Raub, “Study of metallurgical and electrodeposited Au–Co metastable solid solutions,” J. Less-Common Met. 96, 249–256 (1984).

    Article  Google Scholar 

  9. D. Korn, D. Schilling, and G. Zibold, “Magnetic properties of AuCo solid solutions and frequency dependent susceptibility maximum,” J. Phys. F: Met. Phys. 9, 1111–1127 (1979).

    Article  Google Scholar 

  10. N. Kataoka, H. Takeda, J. Echigoya, K. Fukamichi, E. Aoyagi, Y. Shimada, H. Okuda, K. Osamura, M. Furusaka, and T. Goto, “GMR and micro-structure in bulk Au–Co nanogranular alloys,” J. Magn. Magn. Mater. 140–144, 621–622 (1995).

    Article  Google Scholar 

  11. A. R. Miedema, P. F. de Chatel, and F. R. de Boer, “Cohesion in alloys—Fundamentals of a semi-empirical model,” Physica B+C 100, 1–28 (1980).

    Article  Google Scholar 

  12. V. P. Pilyugin, T. P. Tolmachev, A. M. Patselov, D. A. Brytkov, and L. I. Shchinova, “Effect of temperature on the mechanism and kinetics of solid solution formation in the Cu—Zn system at deformation under pressure,” Deform. Razrush. Mater., 2013, 30–36 (2013).

    Google Scholar 

  13. V. P. Pilyugin, T. P. Tolmachev, I. L. Solodova, O. V. Antonova, E. G. Chernyshev, A. I. Ancharov, and A. M. Patselov, “Formation and properties of copper–silver solid solutions upon severe deformation under pressure,” Bull. Russ. Acad. Sci.: Phys. 78, 988–995 (2014).

    Article  Google Scholar 

  14. A. I. Ancharov, A. Yu. Manakov, N. A. Mezentsev, B. P. Tolochko, M. A. Sheromov, and V. M. Tsukanov, “New station at the 4th beamline of the VEPP-3 storage ring,” Nucl. Instrum. Meth. Phys. Res., Sec. A 470, 80–83 (2001).

    Article  Google Scholar 

  15. H. Okamoto, T. B. Massalski, T. Nishizawa, and M. Hasebe, “The Au–Co (Gold–Cobalt) system,” Bull. Alloy Phase Diagrams 6, 449–454 (1985).

    Article  Google Scholar 

  16. V. A. Starenchenko, D. N. Cherepanov, Yu. V. Solov’eva, and L. E. Popov, “Generation and accumulation of point defects in fcc single crystals upon plastic strain,” Russ. Phys. J. 52, 398–410 (2009).

    Article  Google Scholar 

  17. V. L. Gapontsev and V. V. Kondrat’ev, “Diffusion phase transformations in nanocrystalline alloys under severe plastic deformation,” Dokl.-Phys. 47, 576–579 (2002).

    Article  Google Scholar 

  18. V. M. Farber, “Contribution of diffusion processes to structure formation in intense cold plastic deformation of metals,” Metal Sci. Heat Treat. 44, 317–323 (2002).

    Article  Google Scholar 

  19. J. P. Hirth and J. Lothe, Theory of Dislocations, (McGraw-Hill, New York, 1968; AtomIzdat, Moscow, 1972).

    Google Scholar 

  20. M. Shtremel’, “Participation of diffusion in the processes of mechanical alloying,” Metal Sci. Heat Treat. 44, 324–327 (2002).

    Article  Google Scholar 

  21. B. Oberdorfer, D. Setman, E. Steyskal, A. Hohenwarter, W. Sprengel, M. Zehetbauer, R. Pippan, and R. Wurschum, “Grain boundary excess volume and defect annealing of copper after high-pressure torsion,” Acta Mater. 68, 189–195 (2014).

    Article  Google Scholar 

  22. V. V. Popov, A. V. Sergeev, N. K. Arkhipova, and A. Yu. Istomina, “Determination of the parameters of grain-boundary diffusion and segregation of Co in W using an improved model of grain-boundary diffusion,” Phys. Met. Metallogr. 112, 256–266 (2011).

    Article  Google Scholar 

  23. J. Christian, The Theory of Transformations in Metals and Alloys, Part 1: Equilibrium and General Kinetic Theory, (Pergamon, Oxford, 1975; Mir, Moscow, 1978).

    Google Scholar 

  24. R. A. Andrievskii and A. M. Glezer, “Strength of nanostructures,” Phys.-Usp. 52, 315–334 (2009).

    Article  Google Scholar 

  25. R. A. Andrievskii and A. M. Glezer, “Size effects in nanocrystalline materials: II. Mechanical and physical properties,” Phys. Met. Metallogr. 89, 83–102 (2000).

    Google Scholar 

  26. V. P. Pilyugin, T. M. Gapontseva, T. I. Chashchukhina, L. M. Voronova, L. I. Shchinova, and M. V. Degtyarev, “Evolution of the structure and hardness of nickel upon cold and low-temperature deformation under pressure,” Phys. Met. Metallogr. 105, 409–418 (2008).

    Article  Google Scholar 

  27. A. V. Bobylev, Mechanical and Technological Properties of Metals. A Handbook (Metallurgiya, Moscow, 1987) [in Russian].

    Google Scholar 

  28. Properties of Elements: A Handbook Ed. by M. E. Drits, (Metallurgiya, Moscow, 1985) [in Russian].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. P. Tolmachev.

Additional information

Original Russian Text © T.P. Tolmachev, V.P. Pilyugin, A.I. Ancharov, E.G. Chernyshov, A.M. Patselov, 2016, published in Fizika Metallov i Metallovedenie, 2016, Vol. 117, No. 2, pp. 143–150.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tolmachev, T.P., Pilyugin, V.P., Ancharov, A.I. et al. The formation, structure, and properties of the Au–Co alloys produced by severe plastic deformation under pressure. Phys. Metals Metallogr. 117, 135–142 (2016). https://doi.org/10.1134/S0031918X16020125

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X16020125

Keywords

Navigation