Advertisement

The Physics of Metals and Metallography

, Volume 117, Issue 2, pp 151–159 | Cite as

Effect of partial substitution of calcium for yttrium on the structure and properties of the Y0.9Ca0.1Ba2Cu3O6.8 superconductor

  • Yu. V. Blinova
  • L. A. Cherepanova
  • T. P. Krinitsina
  • E. I. Kuznetsova
  • S. V. SudarevaEmail author
  • S. G. Titova
  • S. V. Pryanichnikov
  • M. V. Degtyarev
  • E. P. Romanov
Structure, Phase Transformations, and Diffusion

Abstract

The crystal structure of the high-temperature Y1–x Ca x Ba2Cu3O6.8 superconductor has been studied in a temperature range of 80–300 K using low-temperature X-ray diffraction analysis; its microstructure has been studied by scanning and transmission electron microscopy. Changes of the bond length in the structure of principal phase and precipitation topology of impurity phases and their compositions have been analyzed. An addition of calcium was shown to increase the environmental tolerance of the principal Y123 phase and its microhardness and ensures the low unchanged coefficient of thermal expansion. All of the facts indicate that the material can be used to manufacture composite superconducting articles.

Keywords

high-temperature superconductor coefficient of thermal expansion structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. G. Titova and J. T. S. Irvine, “Perspectives of superconducting temperature increase in HTSC copper oxides,” in Superconductivity Research Developments, Ed. by J. R. Tobin (Nova Sci., New York, 2008), pp. 93–123.Google Scholar
  2. 2.
    S. V. Pryanichnikov, S. G. Titova, L. A. Cherepanova, and G. A. Dorogina, “Anomalies of the Y1–xCaxBa2Cu3Oy crystal structure in the temperature range 80–300 K,” Phys. Solid State, 53, 1991–1996 (2011).CrossRefGoogle Scholar
  3. 3.
    N. P. Liyanawaduge, A. Kumar, R. Jha, B. S. B. Karunarathne, and V. P. S. Awana, “High field magneto-transport and magnetization study of Y1–xCaxBa2Cu3O7–d,” J. Alloys Compd. 543, 135–141 (2012).CrossRefGoogle Scholar
  4. 4.
    R. Giri, V. P. S. Awana, H. K. Singh, R. S. Tiwari, O. N. Srivastava, A. Gupta, B. V. Kumaraswamy, and H. Kishan, “Effect of Ca doping for Y on structural/microstructural and superconducting properties of YBa2Cu3O7–d,” Physica C 419, 101–108 (2005).CrossRefGoogle Scholar
  5. 5.
    K. Buchkov, K. Nenkov, E. Nazarova, and M. Polichetti, “Fundamental and 3rd harmonic AC magnetic susceptibility of over-doped polycrystalline Y1 - xCaxBa2Cu3O7–d (x = 0.025 and x = 0.20) samples,” Physica C 473, 48–56 (2012).CrossRefGoogle Scholar
  6. 6.
    S. H. Naqib and A. Semwal, “Low-temperature critical current of Y1–xCaxBa2Cu3O7–d thin films as a function of hole content and oxygen deficiency,” Physica C 425, 14–20 (2005).CrossRefGoogle Scholar
  7. 7.
    A. Sedky and B. Abu-Ziad, “New investigation for Tc depression by Ca in Y1–xCax:123 superconducting systems,” Physica C 470, 659–668 (2010).CrossRefGoogle Scholar
  8. 8.
    V. P. S. Awana, A. Tulapurkar, K. Malik, and A. V. Narlikar, “Role of Ca in enhancing the superconductivity of YBa2Cu3O7–y,” Phys. Rev. B: Condens. Matter 50, 594–596 (1994).CrossRefGoogle Scholar
  9. 9.
    J. Röhler, P. W. Loeffen, K. Conder, and E. Kaldis, “Local structure study of the underdoped–overdoped transition in YBa2Cu3Ox (x = 6.806–6.984) by yttrium EXAFS,” Physica C 282, 182–185 (1997).CrossRefGoogle Scholar
  10. 10.
    R. Liang, D. A. Bonn, and W. N. Hardy, “Evaluation of CuO2 plane hole doping in YBa2Cu3O6 + x single crystals,” Phys. Rev. B: Condens. Matter Mater. Phys. 73, 180505 (2006).CrossRefGoogle Scholar
  11. 11.
    A. C. Larson and R. B. von Dreele, General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR, 2000. P. 86–748.Google Scholar
  12. 12.
    B. H. Toby, “EXPGUI, a Graphical User Interface for GSAS,” J. Appl. Crystallogr. 34, 210–213 (2001).CrossRefGoogle Scholar
  13. 13.
    J. D. Jorgensen, B. W. Veal, A. P. Paulikas, L. J. Nowicki, G. W. Crabtee, H. Claus, and W. K. Kwok, “Structural properties of oxygen-deficient YBa2Cu3O7–d,” Phys. Rev. B: Condens. Matter 41, 1863–1877 (1990).CrossRefGoogle Scholar
  14. 14.
    S. Sh. Shil’shtein, A. S. Ivanov, and V. A. Somenkov, Coulomb Splitting of Atomic Layers in Layered Cuprate and Nickelate Lattices (RNTs Kurchatovskii Institut, Moscow, 1994) [in Russian].Google Scholar
  15. 15.
    E. P. Romanov, S. V. Sudareva, E. N. Popova, and T. P. Krinitsina, Lowand High-Temperature Superconductors and Composites on Their Basis (Ural. Otd. Ross. Akad. Nauk, Ekaterinburg, 2009) [in Russian].Google Scholar
  16. 16.
    S. V. Sudareva, M. V. Kuznetsov, E. I. Kuznetsova, Yu. V. Blinova, E. P. Romanov, and I. B. Bobylev, “Nature of heavy-atom disordering in the YBa2Cu3O6.8 (1.5 at % Ce) single crystal: X-ray photoelectron spectroscopy,” Phys. Met. Metallogr. 108, 569–578 (2009).CrossRefGoogle Scholar
  17. 17.
    E. I. Kuznetsova, M. V. Kuznetsov, Yu. V. Blinova, T. P. Krinitsina, S. V. Sudareva, E. P. Romanov, D. N. Rakov, and Yu. N. Belotelova, “X-ray photoelectron spectroscopy of ceramic composites Bi,Pb2223/Ag annealed in an atmosphere with a reduced content of oxygen (7.5% O2 + 92.5% N2),” Phys. Met. Metallogr. 113, 365–371 (2012).CrossRefGoogle Scholar
  18. 18.
    W. R. Flavell, J. H. Laverty, D. S.-L. Law, R. Lindsay, C. A. Muryn, C. F. J. Flipse, G. N. Raike, P. L. Wincott, and G. Thornton, “H2O adsorption on Bi2Sr2CaCu2O8 (001),” Phys. Rev. B: Condens. Matter 41, 11623–11626 (1990).CrossRefGoogle Scholar
  19. 19.
    J. E. Alfonso, J. Buitrago, J. Torres, J. F. Marco, and B. Santos, “Influence of fabrication parameters on crystallization, microstructure, and surface composition of NbN thin films deposited by RF magnetron sputtering,” J. Mater. Sci. 45, 5528–5533 (2010).CrossRefGoogle Scholar
  20. 20.
    J.-C. Dupin, D. Gonbeau, P. Vinatier, and A. Levasseur, “Systematic XPS studies of metal oxides, hydroxides and peroxides,” Phys. Chem. Chem. Phys. 2, 1319–1324 (2000).CrossRefGoogle Scholar
  21. 21.
    C. Mao, L. Zhou, X. Wu, and X. Sun, “Spectroscopic investigations of adsorption during fabrication of Ag/(Bi,Pb)2Sr2Ca2Cu3Ox superconducting tape,” Supercond. Sci. Technol. 10, 241–248 (1997).CrossRefGoogle Scholar
  22. 22.
    B. V. Crist, Handbook of Monochromatic XPS Spectra— Commercially Pure Binary Oxides (XPS Int., 2005), vol. 2.Google Scholar
  23. 23.
    J. L. Hueso, J. P. Espinos, A. Caballero, J. Cotrino, and A. R. González-Elipe, “XPS investigation of the reaction of carbon with NO, O2, N2 and H2O plasmas,” Carbon 45, 89–96 (2007).CrossRefGoogle Scholar
  24. 24.
    V. B. Vykhodets, A. E. Davletshin, A. G. Kesarev, Yu. Kester, V. V. Kondrat’ev, M. V. Kuznetsov, T. E. Kurennykh, and K. Khulsen, “Kinetics of diffusion processes for marked atoms of carbon and oxygen in the Zr–O–C system,” in Physico-Chemical Kinetics in Gas Dynamics. wwwchemphyseduru/pdf/2009-1112-001pdfGoogle Scholar
  25. 25.
    C. R. Brundle and D. E. Fowler, “Characterization of YBa2Cu3Ox using coreand valence-level XPS,” Characteriz. Surf. Sci. Rep. 19, 143–168 (1993).CrossRefGoogle Scholar
  26. 26.
    G. Frank, C. Ziegler, and W. Gopel, “Surface composition of clean, epitaxial thin films of YBa2Cu3O7–x from quantitative X-ray photoemission spectroscopy analysis,” Phys. Rev. B: Condens. Matter 43, 2828–2834 (1991).CrossRefGoogle Scholar
  27. 27.
    X. D. Wu, A. Inam, M. S. Hegde, T. Venkatesan, C. C. Chang, E. W. Chase, B. Wilkens, and J. M. Tarascon, “Crystalline perfection of as-deposited high-Tc superconducting thin-film surfaces: Ion channeling and X-ray photoelectron spectroscopy study,” Phys. Rev. B: Condens. Matter 38, 9307–9310 (1988).CrossRefGoogle Scholar
  28. 28.
    A. Gauzzi, H. J. Mathieu, J. H. James, and B. Kellett, “AES, XPS and SIMS characterization of YBa2Cu3O7 superconducting high-Tc thin films,” Vacuum 41, 870–874 (1990).CrossRefGoogle Scholar
  29. 29.
    P. Srivastava, B. R. Sekhar, N. L. Saini, S. K. Sharma, K. B. Garg, B. Mercey, Ph. Lecoeur, and H. Murray, “Study of O1s XPS binding energy in YBa2Cu3O7–x,” Solid State Commun. 88, 105–110 (1993).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • Yu. V. Blinova
    • 1
  • L. A. Cherepanova
    • 2
  • T. P. Krinitsina
    • 1
  • E. I. Kuznetsova
    • 1
  • S. V. Sudareva
    • 2
    Email author
  • S. G. Titova
    • 2
  • S. V. Pryanichnikov
    • 2
  • M. V. Degtyarev
    • 1
  • E. P. Romanov
    • 1
  1. 1.Mikheev Institute of Metal Physics, Ural BranchRussian Academy of SciencesEkaterinburgRussia
  2. 2.Institute of Metallurgy, Ural BranchRussian Academy of SciencesEkaterinburgRussia

Personalised recommendations