Skip to main content
Log in

New Fe−Co−Ni−Cu−Al−Ti Alloy for Single-Crystal Permanent Magnets

  • Electrical and Magnetic Properties
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

A new alloy intended for single-crystal permanent magnets has been suggested. The new alloy has been designed based on the well-known Fe−Co−Ni−Cu−Al−Ti system and contains to 1 wt % Hf. The alloy demonstrates an enhanced potential ability for single-crystal forming in the course of unidirectional solidification of ingot. Single-crystal permanent magnets manufactured from this alloy are characterized by a high level of magnetic properties. When designing the new alloy, computer simulation of the phase composition and calculations of solidification parameters of complex metallic systems have been performed using the Thermo-Calc software and calculation and experimental procedures based on quantitative metallographic analysis of quenched structures. After the corresponding heat treatment, the content of high-magnetic phase in the alloy is 10% higher than that in available analogous alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Sergeev and T. I. Bulygina, Magnetoically Hard Materials (Energiya, Moscow, 1980).

    Google Scholar 

  2. M. V. Pikunov, I. V. Belyaev, and E. V. Sidorov, Crystallization of Alloys and Directional Solidification of Castings (Vladimir. Gos. Univ., Vladimir, 2002) [in Russian].

    Google Scholar 

  3. M. V. Pikunov, “Analysis of the equilibrium crystallization of solid solutions,” Izv. Vyssh. Uchebn. Zaved. Tsvetn. Metall., No. 5, 151–158 (1959).

    Google Scholar 

  4. M. V. Pikunov, I. V. Belyaev, and E. V. Sidorov, “On the calculation of thr crystallization coefficients of alloys—solid solutions,” Izv. Vyssh. Uchebn. Zaved., Chern. Metall., No. 1, 121–124 (1998).

    Google Scholar 

  5. I. V. Belyaev, “Generalized segregation coefficient of multicomponent solid-solution alloys,” Izv. Akad. Nauk., Met., No. 2, 106–108 (1998).

    Google Scholar 

  6. W. A. Tiller, K. A. Jackson, J. W. Rutter, and B. Chalmers, “The redistribution of solute atoms during the solidification of metals,” Acta Metall. 1, 428–437 (1953).

    Article  Google Scholar 

  7. T. T. Cheng, “The mechanism of grain refinement in TiAl alloys by boron addition—An alternative hypothesis,” Intermetallics 8, 29–37 (2000).

    Article  Google Scholar 

  8. Z. W. Huang, “Inhomogeneous microstructure in highly alloyed cast TiAl-based alloys, caused by microsegregation,” Scr. Mater. 52, 1021–1025 (2005).

    Article  Google Scholar 

  9. L. A. Tarshis, J. L. Walker, and J. W. Rutter, “Experiments on the solidification structure of alloy castings,” Metall. Trans. 2, 2589–2597 (1971).

    Article  Google Scholar 

  10. J. A. Spittle and S. Sadli, “Effect of alloy variables on grain refinement of binary aluminum alloys with Al?Ti–B,” Mater. Sci. Techn. 11, 533–537 (1995).

    Article  Google Scholar 

  11. I. Maxwell and A. Hellawell, “Simple model for grain refinement during solidification,” Acta Metall. 23, 229–237 (1975).

    Article  Google Scholar 

  12. A. L. Greer, A. M. Bunn, A. Tronche, P. V. Evans, and D. J. Bristow, “Modeling of inoculation of metallic melts: Application to grain refinement of aluminum by Al–Ti–B,” Acta Mater. 48, 2823–2835 (2000).

    Article  Google Scholar 

  13. P. Desnain, Y. Fautrelle, J.-L. Meyer, J.-P. Riquet, and F. Durand, “Prediction of equiaxed grain density in multicomponent alloys, stirred electromagnetically,” Acta Metall. Mater. 38, 1513–1523 (1990).

    Article  Google Scholar 

  14. M. A. Easton and D. H. St John, “A model of grain refinement incorporating alloy constitution and potency of heterogeneous nucleant particles,” Acta Mater. 49, 1867–1878 (2001).

    Article  Google Scholar 

  15. T. E. Quested, A. T. Dinsdale, and A. L. Greer, “Thermodynamic modeling of growth-restriction effects in aluminum alloys,” Acta Mater. 53, 1323–1334 (2005).

    Article  Google Scholar 

  16. R. Schmid-Fetzer and A. Kozlov, “Thermodynamic aspects of grain growth restriction in multicomponent alloy solidification,” Acta Mater. 59, 6133–6144 (2011).

    Article  Google Scholar 

  17. M. V. Pikunov, I. V. Belyaev, and V. S. Lashuk, “Method of determination of ther intensity of alloy crystallization,” Izv. Vyssh. Uchebn. Zaved, Chern. Metall., No. 9, 101–104 (1983).

    Google Scholar 

  18. I. B. Kekalo and B. A. Samarin, Physical Metallurgy of Precision Alloys. Alloys with Special Magnetic Properties (Metallurgiya, Moscow, 1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Bazhenov.

Additional information

Original Russian Text © I.V. Belyaev, V.E. Bazhenov, A.V. Moiseev, A.V. Kireev, 2016, published in Fizika Metallov i Metallovedenie, 2016, Vol. 117, No. 3, pp. 224–232.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belyaev, I.V., Bazhenov, V.E., Moiseev, A.V. et al. New Fe−Co−Ni−Cu−Al−Ti Alloy for Single-Crystal Permanent Magnets. Phys. Metals Metallogr. 117, 214–221 (2016). https://doi.org/10.1134/S0031918X16010038

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X16010038

Keywords

Navigation