Skip to main content
Log in

Polarized neutron reflectometry of magnetic nanostructures

  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Among a number of methods employed to characterize various types of magnetic nano-structures Polarized Neutron Reflectometry (PNR) is shown to be a unique tool providing a scope of quantitative information on magnetization arrangement over relevant scales. Deeply penetrating into materials neutron spins are able to resolve vectorial profile of magnetic induction with accuracy of a fraction of Oersted over a fraction of nano-meters. This property is exploited in measurements of specular PNR which hence constitutes the method of depth resolved vector magnetometry widely used to examine magnetic states in exchange coupled magnetic superlattices, exchange bias systems, spin valves, exchange springs, superconducting/ferromagnetic heterostructure, etc. Off-specular polarized neutron scattering (OS-PNS) measures the in-plane magnetization distribution over scales from hundreds of nanoto hundreds of micrometers providing, in combination with specular PNR, access to lateral long range fluctuations of the magnetization vector and magnetic domains in these systems. OSPNS is especially useful in studies of co-operative magnetization reversal processes in various films and multilayers laterally patterned into periodic arrays of stripes, or islands of various dimentions, shapes, internal structures, etc., representing an interest for e.g. spintronics. Smaller sizes of 10?100 nm are accessed with the method of Polarized Neutrons Grazing Incidence Small Angle Scattering (PN-GISAS), which in a combination with specular PNR and OS-PNS is used to study self-assembling of magnetic nano-particles on flat surfaces, while Polarized Neutron Grazing Incidence Diffraction (PN-GID) complete the scope of magnetic information over wide range of scales in 3D space. The review of recent results obtained employing the methods listed above is preceded by the detailed theoretical consideration and exemplified by new developments addressing with PNR fast magnetic kinetics in nano-systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. S. Gurevich and L. V. Tarasov, Physics of Low Energy Neutrons (Nauka, Moscow, 1965 [in Russian].

    Google Scholar 

  2. Yu. A. Izumov and R. P. Ozerov, Magnetic Neutron Diffraction (Nauka, Moscow, 1968; Plenum Press, New York, 1970).

    Google Scholar 

  3. Neutron Scattering: Fundamentals, Ed. by F. Fernandez-Alonso and D. L. Price (Elsevier, Amsterdam, 2013).

  4. G. M. Drabkin, “Analysis of energy spectra of polarized neutrons with the aid of a magnetic field,” Sov. Phys. JETP 16, 781–785 (1963).

    Google Scholar 

  5. G. P. Felcher, R. O. Hillecke, R. K. Crawford, J. Haumann, R. Kleb, and G. Ostrowski, “Polarized neutron reflectometer: A new instrument to measure magnetic depth profiles,” Rev. Sci. Instrum. 58, 609 (1987).

    Article  Google Scholar 

  6. C. F. Majkrzak, “Polarized neutron scattering methods and studies involving artificial superlattices,” Physica 156–157, 619 (1989).

    Article  Google Scholar 

  7. C. F. Majkrzak, “Polarized neutron reflectometry”, Physica B 173, 75–88 (1991).

    Article  Google Scholar 

  8. G. B. Felcher, “Magnetic depth profiling studies by polarized neutron reflection,” Physica B 192, 137–149 (1993).

    Article  Google Scholar 

  9. B. P. Toperverg, in Polarized Neutron Scattering, Ed. by Th. Brückel and W. Schweika, Series: Matter and Materials, Helmholtz Zentrum Julich, Germany, 12, 274 (2002).

  10. B. P. Toperverg, “Off-specular polarized neutron scattering from magnetic fluctuations in thin films and multilayers”, Appl. Phys. A 74 (1, Suppl), S1560–S1562 (2002).

    Article  Google Scholar 

  11. S. D. Bader, Colloquium: Opportunities in nanomagnetism, Rev. Mod. Phys 78, 1 (2006).

    Article  Google Scholar 

  12. A. Fert, Nobel Lecture: “Origin, development, and future of spintronics,” Rev. Mod. Phys 80, 1517 (2008).

    Article  Google Scholar 

  13. C. A. F. Vaz, J. A. C. Bland, and G. Lauhoff, “Magnetism in ultrathin film structures,” Rep. Prog. Phys 71, 78 (2008).

    Article  Google Scholar 

  14. H. Zabel, “Progress in spintronics,” Superlatt. Microstruct. 46, 541–553 (2009).

    Article  Google Scholar 

  15. S. D. Bader and S. S. P. Parkin, “Spintronics,” Annu. Rev. Condens. Matter Phys. 1, 71–88 (2010).

    Article  Google Scholar 

  16. J. F. Ankner and H. Zabel, “Applications of neutron reflectivity to nanoscience: Thin films and interfaces,” MRS Bull. 28, 918–922 (2003).

    Article  Google Scholar 

  17. J. A. C. Bland and A. F. Vaz, “Polarized neutron reflection studies on thin magnetic films,” in Ultrathin Magnetic Structures III: Fundamentals of Nanomagnetism, Ed. by J. A. C. Bland and B. Heinrich (Springer, Berlin, 2005), pp. 233–284.

    Chapter  Google Scholar 

  18. M. Fitzsimmons and C. F. Majkrzak, in Modern Techniques for Characterizing Magnetic Materials, Ed. by Y. Zhu (Kluwer, New York, 2005), p. 107–152.

  19. H. Zabel, “Neutron reflectivity of spintronic materials,” Mater. Today 9, 42–49 (2006).

    Article  Google Scholar 

  20. C. F. Majkrzak, K. F. O’Donovan, and N. F. Berk, “Polarized neutron polarimetry,” in Neutron Scattering from Magnetic Materials, Ed. by Tapan Chatterji (Elsevier Amsterdam, 2006), pp. 397–471.

    Chapter  Google Scholar 

  21. H. Zabel, K. Theis-Bröhl, and B. P. Toperverg, “Polarized neutron reflectivity and scattering from magnetic nanostructures and spintronic materials,” in Handbook on Magnetism and Advanced Magnetic Materials, Ed. by Kronmüller and S. Parkin (Wiley, New York, 2007), vol. 3, p. 1198.

    Google Scholar 

  22. G. Felcher and A. Hoffmann, “Domain states determined by neutron refraction and scattering,” in Handbook on Magnetism and Advanced Magnetic Materials, Ed. by Kronmüller and S. Parkin (Wiley, New York, 2007), vol. 3, p. 1172.

    Google Scholar 

  23. H. Zabel, K. Theis-Bröhl, M. Wolff, and B. P. Toperverg, “Polarized neutron reflectometry for the analysis of nanomagnetic systems”, IEEE Trans. Magn. 44, 1928–1934 (2008).

    Article  Google Scholar 

  24. C. H. Marrows, L. C. Chapon, and S. Langridge, “Spintronics and functional materials,” Mater. Today 12 (7–8), 70–77 (2009).

    Article  Google Scholar 

  25. H. J. C. Lauter, V. Lauter, and B. P. Toperverg, “Reflectivity, off-specular scattering, and GI-SAS: Neutrons”, Polymer Science: A Comprehensive Reference 2, 411–432 (2012).

    Google Scholar 

  26. M. R. Fitzsimmons and I. K. Schuller, “Neutron scattering—The key characterization tool for nanostructured magnetic materials”, J. Magn. Magn. Mater. 350, 199–208 (2014).

    Article  Google Scholar 

  27. T. Saerbeck, “Magnetic Exchange Phenomena Probed by Neutron Scattering”, Solid State Physics 65, 237–352 (2014).

    Google Scholar 

  28. A. Ioffe, Yu. Turkevitch, and G. Drabkin, “Diffraction-grating neutron interferometer,” JETP Lett. 33, 374–380 (1981).

    Google Scholar 

  29. B. P. Toperverg, G. P. Felcher, V. V. Metlushko, V. Leiner, R. Siebrecht, and O. Nikonov, “Grazing incidence neutron diffraction from large scale 2D structures,” Physica B 283, 149–152 (2000).

    Article  Google Scholar 

  30. F. Y. Ogrin, S. M. Weekes, B. Cubitt, A. Wildes, A. Drew, C. A. Ross, W. Jung, R. Menon, B. Toperverg, “Polarized neutron reflectivity investigation of periodic magnetic rings”, IEEE Trans. Magn. 43, 2731–2733 (2007).

    Article  Google Scholar 

  31. A. Remhof, A. Westphalen, K. Theis-Bröhl, J. Grabis, A. Nefedov, B. Toperverg, and H. Zabel, “Magnetization reversal studies of periodic magnetic arrays via scattering methods,” in Magnetic Nanostructures, Ed by B. Aktas, L. Tagirov, and F. Mikailov, Springer Series in Materials Science (Springer, Berlin, 2007), pp. 65–96.

    Chapter  Google Scholar 

  32. W.-T. Lee, F. Klose, H. Q. Yin, and B. P. Toperverg, “Measuring lateral magnetic structures in thin films using time-of-flight polarized neutron reflectometry”, Physica B 335, 77–81 (2003).

    Article  Google Scholar 

  33. N. Ziegenhagen, U. Rücker, E. Kentzinger, R. Lehmann, A. van der Hart, B. Toperverg, and Th. Brückel, “Magnetic properties of laterally structured Fe/Cr multilayers”, Physica 335, 50–53 (2003).

    Article  Google Scholar 

  34. F. Brüssing, B. P. Toperverg, and A. Devishvili, G. A. Badini Confalonieri, K. Theis-Bröhl and H. Zabel, “Laterally patterned spin-valve superlattice: Magnetometry and polarized neutron scattering study”, J. Appl. Phys. 117, 133903 (2015).

    Article  Google Scholar 

  35. K. Theis-Bröhl, B. P. Toperverg, V. Leiner, A. Westphalen, H. Zabel, J. McCord, K. Rott, and H. Brückl, “Correlated magnetic reversal in periodic stripe patterns”, Phys. Rev. B 71, 020403(R) (2005).

    Article  Google Scholar 

  36. K. Theis-Bröhl, H. Zabel, J. McCord, and B. P. Toperverg, “Quantification of the magnetization arrangement of patterned films measured by polarized neutron reflectivity”, Physica B 356, 14–20 (2005).

    Article  Google Scholar 

  37. K. Theis-Bröhl, M. Wolff, A. Westphalen, H. Zabel, J. McCord, V. Höink, J. Schmalhorst, G. Reiss, T. Weis, D. Engel, A. Ehresmann, U. Rücker, and B. P. Toperverg, “Exchange-bias instability in a bilayer with an ion-beam imprinted stripe pattern of ferromagnetic/antiferromagnetic interfaces”, Phys. Rev. 73, 174408 (2006).

    Article  Google Scholar 

  38. K. Theis-Bröhl, B. P. Toperverg, A. Westphalen, H. Zabel, J. McCord, V. Hoink, J. Schmalhorst, G. Reiss, T. Weis, D. Engel, A. Ehresmann, and U. Rücker, “Polarized neutron reflectometry study on a magnetic film with an ion beam imprinted stripe pattern”, Superlatt. Microstruct. 41, 104–108 (2007).

    Article  Google Scholar 

  39. Ch. Hamann, J. McCord, L. Schultz, B. P. Toperverg, K. Theis-Bröhl, M. Wolff, R. Kaltofen, and I. Mönch, “Competing magnetic interactions in exchange-biasmodulated films”, Phys. Rev. B 81, 024420 (2010).

    Article  Google Scholar 

  40. K. Theis-Bröhl, D. Mishra, B. P. Toperverg, H. Zabel, B. Vogel, A. Regtmeier, A. Hütten, “Self organization of magnetic nanoparticles: A polarized grazing incidence small angle neutron scattering and grazing incidence small angle x-ray scattering study”, J. Appl. Phys. 110, 102207 (2011).

    Article  Google Scholar 

  41. K. Theis-Bröhl, M. Wolff, I. Ennen, Ch. D. Dewhurst, A. Hütten, B. P. Toperverg, “Self-ordering of nanoparticles in magneto-organic composite films”, Phys. Rev. 78, 134426 (2008).

    Article  Google Scholar 

  42. D. Mishra, M. J. Benitez, and O. Petracic, G. A. Badini Confalonieri, P. Szary, F. Brüssing, K. Theis-Bröhl, A. Devishvili, A. Vorobiev, O. Konovalov, M. Paulus, C. Sternemann, B. P. Toperverg, and H. Zabel, “Selfassembled iron oxide nanoparticle multilayer: X-ray and polarized neutron reflectivity,” Nanotechnology 23, 055707 (2012).

    Article  Google Scholar 

  43. D. Mishra and D. Greving, G. A. Badini Confalonieri, J. Perlich, B. P. Toperverg, H. Zabel, and O. Petracic, “Growth modes of nanoparticle superlattice thin films,” Nanotechnology 25, 205602 (2014).

    Article  Google Scholar 

  44. D. Mishra, O. Petracic, A. Devishvili, K. Theis-Bröhl, B. P. Toperverg, and H. Zabel, “Polarized neutron reflectivity from monolayers of self-assembled magnetic nanoparticles”, J. Phys.: Condens. Matter. 27, 136001 (2015).

    Google Scholar 

  45. B. P. Toperverg, A. Rühm, W. Donner, and H. Dosch, “Polarized neutron grazing angle birefringent diffraction from magnetic stratified media”, Physica B 267–268, 198–202 (1999).

    Article  Google Scholar 

  46. R. Günther, W. Donner, B. P. Toperverg, and H. Dosch, “Birefringent Bragg diffraction of evanescent neutron states in magnetic films,” Phys. Rev. Lett. 81, 116–119 (1998).

    Article  Google Scholar 

  47. B. P. Toperverg, V. V. Lauter-Pasyuk, H. J. Lauter, and A. Vorobiev, “Grazing incidence neutron diffraction from ferromagnetic films in multi-domain state”, Physica B 356, 51–55 (2005).

    Article  Google Scholar 

  48. K. Zhernenkov, D. Gorkov, B. P. Toperverg, and H. Zabel, Frequency dependence of magnetization reversal in thin Fe(100) films, Phys. Rev. B 88, 020401(R) (2013).

    Article  Google Scholar 

  49. K. Zhernenkov, S. Klimko, B. P. Toperverg, and H. Zabel, AC-polarized neutron reflectometry: Application to domain dynamics in thin Fe film, J. Phys.: Conf. Ser., 211, 012016 (2010).

    Google Scholar 

  50. S. Klimko, K. Zhernenkov, B. P. Toperverg, and H. Zabel, Development and application of setup for ac magnetic field in neutron scattering experiments, Rev. Sci. Instrum. 81, 103303 (2010).

    Article  Google Scholar 

  51. B. P. Toperverg, V. V. Deriglazov, and V. E. Mikhailova, “On the studies of spin-wave dynamics in ferromagnets by polarized neutron scattering”, Physica B 183, 326–330 (1993).

    Article  Google Scholar 

  52. V. Deriglazov, A. Okorokov, V. Runov, B. Toperverg, R. Kampmann, H. Eckerlebe, W. Schmidt, and W. Löbner, Study of spin waves in amorphous ferromagnet Fe50Ni22Cr10P19 by small angle polarized neutron scattering, Physica B 180–181, 262–264 (1992).

    Article  Google Scholar 

  53. M. de Jong, J. Sietsma, M. Th. Rekveldt, B. P. Toperverg, V. V. Deriglazov, V. V. Runov, A. I. Okorokov, H. Eckerlebe, and R. Kampmann, “The relation between structural relaxation and the spin dynamics in amorphous Fe40Ni40B20,” J. Non-Cryst. Solids 205–207, 645–649 (1996).

    Article  Google Scholar 

  54. S. Baessler, A. M. Gagarski, E. V. Lychagin, A. Mietke, A. Yu. Muzychka, V. V. Nesvizhevsky, G. Pignol, A. V. Strelkov, B. P. Toperverg, and K. Zhernenkov, New methodical developments for GRANIT, Compt. Rend. Phys. 12, 729–754 (2011).

    Article  Google Scholar 

  55. H. Frielinghaus, M. Kerscher, O. Holderer, M. Monkenbusch, and D. Richter, Acceleration of membrane dynamics adjacent to a wall, Phys. Rev. E 85, 041408 (2012).

    Article  Google Scholar 

  56. H. Frielinghaus, O. Holderer, F. Lipfert, M. Monkenbusch, N. Arend, and D. Richter, Scattering depth correction of evanescent waves in inelastic neutron scattering using a neutron prism, Nucl. Inst. Methods. A 686, 71–74 (2012).

    Article  Google Scholar 

  57. L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory, Course of Theoretical Physics, Vol. 3 (Nauka, Moscow, 1974; Butterworth–Heinemann, Boston, 1981).

    Google Scholar 

  58. A. I. Baz, Ya. B. Zeldovich, and A. M. Perelomov, “Scattering, reactions and decay in nonrelativistic quantum mechanics”, Izrael Program for Science Translations (Jerusalem, 1969).

    Google Scholar 

  59. M. I. Goldberger and K. M. Watson, Collision Theory (John Wiley & Sons, Inc., New York, 1964).

    Google Scholar 

  60. R. G. Newton, Scattering Theory of Waves and Particles (McGraw-Hill, New York, 1967).

    Google Scholar 

  61. N. F. Mott and H. S. W. Messey, The Theory of Atomic Collisions (Clarendon Press, Oxford, 1965; Inostrannaya Literatura, Moscow, 1951).

    Google Scholar 

  62. B. P. Toperverg, O. Schärpf, and I. S. Anderson, “Optical theorem for neutron scattering from rough interfaces”, Physica B 276–278, 954–955 (2000).

    Article  Google Scholar 

  63. B. P. Toperverg, “Optical theorem, depolarization and vector tomography”, Physica B 335, 174–182 (2003).

    Article  Google Scholar 

  64. A. V. Lazuta, S. V. Maleev, and B. P. Toperverg, “On neutron polarization in critical scattering above the Curie point”, Phys. Lett. 65A, 348–350 (1978).

    Article  Google Scholar 

  65. A. V. Lazuta, S. V. Maleev, and B. P. Toperverg, “Three-point dynamic correlations of magnetization fluctuations in ferromagnets, and possibilities of studying them by means of polarized neutrons”, Sov. Phys. JETP 48, 386–393 (1978).

    Google Scholar 

  66. M. Th. Rekveldt, J. Phys. Colloq. C1 32, C579 (1971).

    Google Scholar 

  67. G. M. Drabkin, A. I. Okorokov, and V. V. Runov, “Anisotropy of the depolarization of a neutron beam, JETP Lett 5, 324–325 (1972).

    Google Scholar 

  68. A. I. Okorokov and V. V. Runov, “Vectro analysis of polarization at small-angle neutron scattering,” Physica B 297, 239–244 (2001).

    Article  Google Scholar 

  69. F. Tasset, “Neutron beams at the spin revolution,” Physica B 297, 1–8 (2001).

    Article  Google Scholar 

  70. B. Toperverg, O. Nikonov, V. Lauter-Passyuk, and H. Lauter, “Towards 3D polarization analysis in neutron polarimetry,” Physica B 297, 169–174 (2001).

    Article  Google Scholar 

  71. J. M. Cowley, Diffraction Physics (North-Holland, Amsterdam, 1975; Mir, Moscow, 1979).

    Google Scholar 

  72. G. P. Felcher, S. Adenwalla, V. O. De Haan, and A. A. Van Well, “Zeeman splitting of surface-scattered neutrons”, Nature 377, 409–410 (1995).

    Article  Google Scholar 

  73. S. V. Maleev and B. P. Toperverg, “Low-angle multiple scattering by static inhomogeneities”, Sov. Phys. JETP 51, 158–165 (1980).

    Google Scholar 

  74. B. Toperverg, A. Vorobyev, G. Gordeyev, A. Lazebnik, Th. Rekveldt, and W. Kraan, “Use of the optical theorem in polarized neutron small angle scattering from ferrofluid”, Physica B 267–268, 203–206 (1999).

    Article  Google Scholar 

  75. A. Rühm, B. P. Toperverg, and H. Dosch, “Supermatrix approach to polarized neutron reflectivity from arbitrary spin structures”, Phys. Rev. B 60, 16073–16977 (1999).

    Article  Google Scholar 

  76. L. G. Parratt, “Surface studies of solids by total reflection of X-rays”, Phys. Rev 95, 359–369 (1954).

    Article  Google Scholar 

  77. D. Navas, J. Torrejon, F. Béron, C. Redondo, F. Batallan, B. P. Toperverg, A. Devishvili, B. Sierra, F. Castaño, K. R. Pirota, and C. A. Ross, “Magnetization reversal and exchange bias effects in hard/soft ferromagnetic bilayers with orthogonal anisotropies”, New J. Phys. 14, 113001 (2012).

    Article  Google Scholar 

  78. D. Navas, C. Redondo, G. A. Badini Confalonieri, F. Batallan, A. Devishvili, Ó. Iglesias-Freire, A. Asenjo, C. A. Ross, and B. P. Toperverg, “Domainwall structure in thin films with perpendicular anisotropy,” Phys. Rev. B 90, 054425 (2014).

    Article  Google Scholar 

  79. K. V. O’Donovan, J. A. Borchers, F. Majkrzak, O. Hellwig, E. E. Fullerton, “Pinpointing chiral structures with front-back polarized neutron reflectometry”, Phys. Rev. Lett. 88, 067201 (2002).

    Article  Google Scholar 

  80. Yaohua Liu, S. G. E. Velthuis, J. S. Jiang, Y. Choi, S. D. Bader, A. A. Parizzi, H. Ambaye, and V. Lauter, “Magnetic structure in Fe/Sm–Co exchange spring bilayers with intermixed interfaces”, Phys. Rev. B 83, 174418 (2011).

    Article  Google Scholar 

  81. A. Devishvili, K. Zhernenkov, A. J. C. Dennison, B. P. Toperverg, M. Wolff, B. Hjörvarsson, and H. Zabel, “SuperADAM: Upgraded polarized neutron reflectometer at the Institut Laue–Langevin”, Rev. Sci. Instrum. 84, 025112 (2013).

    Article  Google Scholar 

  82. B. P. Toperverg, H. J. Lauter, and V. V. Lauter-Pasyuk, “Larmor pseudo-precession of neutron polarization at reflection”, Physica B 356, 1–8 (2005).

    Article  Google Scholar 

  83. E. A. Dyadkina, N. A. Grigoryeva, A. A. Vorobiev, S. V. Grigoriev, L. V. Lutsev, K. Zhernenkov, M. Wolff, D. Lott, A. I. Stognij, N. N. Novitskii, and B. P. Toperverg, “Polarized neutron reflectometry from the interface of the heterostructures SiO2(Co)/Si and SiO2(Co)/GaAs, Physica B 404, 2547–2549 (2009).

    Article  Google Scholar 

  84. M. Vadalá, K. Zhernenkov, M. Wolff, B. P. Toperverg, K. Westerholt, H. Zabel, P. Wisniowski, S. Cardoso, and P. P. Freitas, “Structural characterization and magnetic profile of annealed CoFeB/MgO multilayers”, J. Appl. Phys. 105, 113911 (2009).

    Article  Google Scholar 

  85. Hui He, K. Zhernenkov, M. Vadalá, N. Akdogan, D. Gorkov, R. M. Abrudan, B. P. Toperverg, H. Zabel, H. Kubota, and S. Yuasa, “The effect of annealing on the junction profile of CoFeB/MgO tunnel junctions”, J. Appl. Phys. 108, 063922 (2010).

    Article  Google Scholar 

  86. D. K. Satapathy, M. A. Uribe-Laverde, I. Marozau, V. K. Malik, S. Das, Th. Wagner, C. Marcelot, J. Stahn, S. Brück, A. Rühm, S. Macke, T. Tietze, E. Goering, A. Franó, J.-H. Kim, M. Wu, E. Benckiser, B. Keimer, A. Devishvili, B. P. Toperverg, M. Merz, P. Nagel, S. Schuppler, and C. Bernhard, “Magnetic proximity effect in YBa2Cu3O7/LaMn3–δ superlattices, Phys. Rev. Lett. 108, 197201 (2012).

    Article  Google Scholar 

  87. M. A. Uribe-Laverde, D. K. Satapathy, I. Marozau, V. K. Malik, S. Das, K. Sen, J. Stahn, A. Rühm, J.-H. Kim, T. Keller, A. Devishvili, B. P. Toperverg, and C. Bernhard, “Depth profile of the ferromagnetic order in a YBa2Cu3O7/La2/3Ca1/3MnO3 superlattice on a LSAT substrate: A polarized neutron reflectometry study,” Phys. Rev. B 87, 115105 (2013).

    Article  Google Scholar 

  88. V. Lauter-Pasyuk, H. J. Lauter, B. Toperverg, O. Nikonov, E. Kravtsov, M. A. Milyaev, L. Romashev, and V. Ustinov, “Magnetic off-specular neutron scattering from Fe/Cr multilayers”, Physica B 283, 194–198 (2000).

    Article  Google Scholar 

  89. V. Lauter-Pasyuk, H. J. Lauter, B. Toperverg, O. Nikonov, E. Kravtsov, L. Romashev, and V. Ustinov, “Magnetic neutron off-specular scattering for the direct determination of the coupling angle in exchange-coupled multilayers”, J. Magn. Magn. Mater. 226, 1694–1696 (2001).

    Article  Google Scholar 

  90. E. Kravtsov, V. Lauter-Pasyuk, H. J. Lauter, B. Toperverg, O. Nikonov, A. Petrenko, M. Milyaev, L. Romashev, and V. Ustinov, “Interface formation and magnetic ordering in Fe/Cr hybrid nanostructures”, Physica B 297, 118–121 (2001).

    Article  Google Scholar 

  91. V. Lauter-Pasyuk, H. J. Lauter, B. P. Toperverg, L. Romashev, and V. Ustinov, “Transverse and Lateral Structure of the Spin-Flop Phase in Fe/Cr Antiferromagnetic Superlattices”, Phys. Rev. Lett. 89, 167203 (2002).

    Article  Google Scholar 

  92. H. J. Lauter, V. Lauter-Pasyuk, B. P. Toperverg, I. Romashev, V. Ustinov, E. Kravtsov, A. Vorobiev, O. Nikonov, and J. Major, “Spin-resolved unpolarized neutron scattering off-specular scattering for magnetic multilayer studies”, Appl. Phys. A 74 (1, Suppl.), S1557–S1559 (2002).

    Article  Google Scholar 

  93. H. Lauter, V. Lauter-Pasyuk, B. Toperverg, L. Romashev, M. Milyaev, T. Krinitsina, E. Kravtsov, V. Ustinov, A. Petrenko, and V. Aksenov, “Domains and interface roughness in Fe/Cr multilayers: Influence on the GMR effect”, J. Magn. Magn. Mater. 258–259, 338–341 (2013).

    Google Scholar 

  94. V. Lauter-Pasyuk, H. J. Lauter, B. Toperverg, L. Romashev, M. Milyaev, A. Petrenko, V. Aksenov, and V. Ustinov, “Ordering in magnetic multilayers by off-specular neutron scattering”, J. Magn. Magn. Mater. 258–259, 382–387 (2003).

    Article  Google Scholar 

  95. H. J. Lauter, V. Lauter-Pasyuk, B. P. Toperverg, U. Rücker, M. Milyaev, L. Romashev, T. Krinitsyna, and V. Ustinov, “Layer magnetization evolution in an Fe/Cr multilayer with uniaxial anisotropy”, Physica B 335, 59–62 (2003).

    Article  Google Scholar 

  96. H. J. Lauter, B. P. Toperverg, V. Lauter-Pasyuk, A. Petrenko, and V. Aksenov, “Larmor precession reflectometry”, Physica B 350 (Suppl.) E759–E762 (2004).

    Article  Google Scholar 

  97. H. Lauter, V. Lauter, A. Vorobiev, M. Mylaev, L. Romashev, V. Ustinov, and B. Toperverg, “Magnetization distribution in magnetic films studied with Larmor-encoding” Physica B 404, 2553–2556 (2009).

    Article  Google Scholar 

  98. E. Kentzinger, U. Rücker, B. Toperverg, and Th. Brückel, “Determination of the magnetic fluctuations in an Fe/Cr/Fe trilayer exhibiting a neutron resonance state”, Physica B 335, 89–94 (2003).

    Article  Google Scholar 

  99. A. Bergmann, J. Grabis, B. P. Toperverg, V. Leiner, M. Wolff, H. Zabel, and K. Westerholt, “Antiferromagnetic dipolar ordering in Co2MnGe/VN multilayers,” Phys. Rev. B 72, 214403 (2005).

    Article  Google Scholar 

  100. S. Couet, K. Schlage, Th. Diederich, R. Ruffer, K. Theis-Bröhl, B. P. Toperverg, K. Zhernenkov, H. Zabel, and R. Rölsberger, “The magnetic structure of coupled Fe/FeO multilayers revealed by nuclear resonant and neutron scattering methods”, New J. Phys. 11, 013038 (2009).

    Article  Google Scholar 

  101. T. Saerbeck, N. Loh, D. Lott, B. P. Toperverg, A. M. Mulders, A. Fraile Rodriguez, J. W. Freeland, M. Ali, B. J. Hickey, A. P. J. Stampfl, F. Klose, and R. L. Stamps, “Spatial fluctuations of loose spin coupling in CuMn/Co multilayers,” Phys. Rev. Lett. 107, 127201 (2011).

    Article  Google Scholar 

  102. T. Saerbeck, N. Loh, D. Lott, B. P. Toperverg, A. M. Mulders, M. Ali, B. J. Hickey, A. P. J. Stampfl, F. Klose, and R. L. Stamps, “Specular and off-specular polarized neutron reflectometry of canted magnetic domains in loose spin coupled CuMn/Co multilayers”, Phys. Rev. B 85, 014411 (2012).

    Article  Google Scholar 

  103. V. Syromyatnikov, B. Toperverg, V. Deriglazov, A. Schebetov, T. Ebel, R. Kampmann, and R. Wagner, “Non-specular polarized neutron scattering from rough interfaces in periodic multilayered magnetic structures”, Physica B 234–236, 475–476 (1997).

    Article  Google Scholar 

  104. V. G. Syromyatnikov, A. Menelle, B. P. Toperverg, Z. N. Soroko, and A. F. Schebetov, “Off-specular polarized neutron scattering from rough interfaces in Co/Ti and Fe/Al multilayered structures”, Physica B 267–268, 190–193 (1999).

    Article  Google Scholar 

  105. V. G. Syromyatnikov, B. P. Toperverg, R. Siebrecht, A. Menelle, N. K. Pleshanov, V. M. Pusenkov, A. F. Schebetov, Z. N. Soroko, and V. A. Ul’yanov, “Observation of peculiarities in magnetic off-specular polarized neutron scattering from rough interfaces in Co/Ti periodic multilayer, Phys. B 276–278, 700–701 (2000).

    Article  Google Scholar 

  106. V. G. Syromyatnikov, B. P. Toperverg, E. Kentzinger, V. V. Deriglazov, R. Kampmann, N. K. Pleshanov, V. M. Pusenkov, A. F. Schebetov, R. Siebrecht, and V. A. Ul’yanov, “Off-specular polarized neutron scattering from periodic Co/Ti and aperiodic Fe/Al magnetic multilayers,” Physica B 297, 175–179 (2001).

    Article  Google Scholar 

  107. U. Rücker, E. Kentzinger, B. Toperverg, F. Ott, and T. Brückel, “Layer-by-layer magnetometry of polarizing supermirrors”, Appl.Phys. A 74 (1, Suppl.), S607–S609 (2002).

    Article  Google Scholar 

  108. E. Kentzinger, U. Rücker, B. Toperverg, F. Ott, and T. Brückel, “Depth-resolved investigation of the lateral magnetic correlations in a gradient nanocrystalline multilayer”, Phys. Rev. B 77, 104435 (2008).

    Article  Google Scholar 

  109. K. Theis-Bröhl, Ph. Gutfreund, A. Vorobiev, M. Wolff, B. P. Toperverg, J. A. Dura, and J. A. Borchers, “Self assembly of magnetic nanoparticles at silicon surfaces”, Soft Matter 11, 4695–4704 (2015).

    Article  Google Scholar 

  110. E. Kentzinger, U. Rücker, and B. P. Toperverg, “Simulations of off-specular scattering of polarized neutrons from laterally patterned magnetic multilayers”, Physica B 335, 82–88 (2003).

    Article  Google Scholar 

  111. M. Feygenson, B. P. Toperverg, U. Rücker, E. Kentzinger, and Th. Brückel, “Neutron quantum well states in Fe/Co/Fe trilayers”, Physica B 350 (Suppl.), E233–E235 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. P. Toperverg.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toperverg, B.P. Polarized neutron reflectometry of magnetic nanostructures. Phys. Metals Metallogr. 116, 1337–1375 (2015). https://doi.org/10.1134/S0031918X15130025

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X15130025

Keywords

Navigation