The Physics of Metals and Metallography

, Volume 116, Issue 6, pp 538–543 | Cite as

Domain structure and magnetic losses in laminated magnetic circuits upon laser treatment

  • V. I. PudovEmail author
  • Yu. N. Dragoshanskii
Electrical and Magnetic Properties


Methods of optimizing the magnetic domain structure and functional characteristics of electrical-sheet anisotropic steel based on the Fe-Si alloy and the laminated magnetic circuits of transformers have been developed. The use of an efficient complex based on the local laser treatment and application of magnetically active electrically insulating coatings provided a significant reduction in the magnetic losses in the sheets of the steel (by 18–22%) and in the magnetic circuits of transformers (by 9–14%).


laminated magnetic circuit electrical-sheet steel magnetic domains magnetic losses laser treatment local pressure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. I. Bagaev, “Estimation of the induction effect on the losses in the magnetic circuit of a transformer in the case of different systems of laminating of the magnetic circuit,” Polzunov. Vestn., No. 4-2, 4–11 (2013).Google Scholar
  2. 2.
    Yu. N. Dragoshanskii and B. K. Sokolov, “Control of magnetic domain structure as a means for the optimization of properties of anisotropic electrotechnical steels,” Izv. Ross. Akad. Nauk SSSR, Ser. Fiz. 53, 610–613 (1989).Google Scholar
  3. 3.
    Russian State Standard GOST 21427.1-83: Electrotechnical Cold-Rolled Anisotropic Thin-Plate Steel (1983).Google Scholar
  4. 4.
    Yu. N. Dragoshanskii and V. I. Pudov, “Influence of laser processing and magnetically active inorganic coatings on the dynamic magnetic properties of soft-magnetic materials,” Inorg. Mater. 49, 668–675 (2013).CrossRefGoogle Scholar
  5. 5.
    Yu. N. Dragoshanskii, V. I. Pudov, and V. V. Gubernatorov, “Combined thermomagnetic and laser treatments of anisotropic electrical materials,” Phys. Met. Metallogr., 111, 464–470 (2011).CrossRefGoogle Scholar
  6. 6.
    V. I. Pudov and Yu. N. Dragoshanskii, “A way for improving magnetic properties of the anisotropic steel by laser treatment,” RF Patent 2501866, Byull. Izobret., No. 35 (2013).Google Scholar
  7. 7.
    T. A. Khanzhina, V. I. Bamburov, and Yu. N. Dragoshanskii, “Solution for the application of electrically insulating coatings on steel and the method of its preparation,” Inventor’s certificate SSSR, No. 1608243, Bull. Izobret., No. 43 (1990).Google Scholar
  8. 8.
    L. S. Karenina, Yu. N. Dragoshanskii, R. B. Puzhevich, and G. S. Korzunin, “Effect of an electrically insulating coatings on the efficiency of laser treatment of grain-oriented electrical steel,” Phys. Met. Metallogr., 112, 231–236 (2011).CrossRefGoogle Scholar
  9. 9.
    Yu. N. Dragoshanskii, B. K. Sokolov, V. V. Gubernatorov, V. A. Alekseev, G. S. Bykovskii, B. P. Yatsenko, S. V. Smirnov, and T. A. Khanzhina, “Effect of local laser treatment on core loss in amorphous electrical alloys,” Phys. Met. Metallogr. 75, 44–48 (1993).Google Scholar
  10. 10.
    B. K. Sokolov and Yu. N. Dragoshanskii, “Structural barriers and reduction of magnetic losses in anisotropic electrical steels,” Fiz. Met. Metalloved., No. 1, 92–102 (1991).Google Scholar
  11. 11.
    V. I. Pudov and Yu. N. Dragoshanskii, “Method of treatment of laminated magnetic circuit of a shell-type transformer,” Inventir’s application No. 2014120595 (2014).Google Scholar
  12. 12.
    Yu. N. Dragoshanskii and L. M. Sheiko, “Effect of plane stresses on the domain structure and magnetic properties of silicon iron,” Izv. Ross. Akad. Nauk SSSR, Ser. Fiz. 49, 1568–1572 (1985).Google Scholar
  13. 13.
    Yu. N. Starodubtsev, E. L. Lykov, and V. V. Druzhinin, “Change of magnetic losses in transformer steel under the influence of inhomogeneous pressure,” Fiz. Met. Metalloved. 48, 41–46 (1979).Google Scholar
  14. 14.
    A. A. Redikul’tsev, G. S. Korzunin, M. L. Lobanov, G. M. Rusakov, and L. V. Lobanova, “Effect of annealing on magnetostrictive characteristics of a grain-oriented electrical steel with ordinary and refined domain structure,” Phys. Met. Metallogr., 115, 650–654 (2014).CrossRefGoogle Scholar
  15. 15.
    Yu. N. Dragoshanskii and V. I. Pudov, “Physical foundations of improving electromagnetic properties of magnetically soft materials,” Proc. 9th Int. Sci.-Tech. Conf. “Contemporary Methods and Technologies of Production and Treatment of Materials” (Fiz. Tekhn. Inst., Nat. Akad. Nauk Belarus., Minsk, 2014), pp. 284–290.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Institute of Metal Physics, Ural BranchRussian Academy of SciencesEkaterinburgRussia

Personalised recommendations