Skip to main content
Log in

Structure of the aluminum alloy Al-Cu-Mg cryorolled to different strains

  • Structure, Phase Transformations, and Diffusion
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Methods of optical metallography, X-ray diffraction, and transmission and scanning electron microscopy were used to study changes in the structure of the aluminum alloy D16 (2024) caused by isothermal rolling at a temperature of liquid nitrogen. It has been established that the basic structural changes that take place in the material upon deformations to e ∼ 2.0 are due to the formation and evolution of the dislocation structure, which contains cells of nanometer size. With further straining to e ∼ 3.5, the processes of recovery and recrystallization become activated, which lead to the formation of a mixed grain-subgrain nanosized structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. A. Khaimovich, “Cryodeformation of metals upon uniform compression,” Vopr. At. Nauki Tekhn., Ser.: Fiz. Rad. Povrezhd. Rad. Mater. Sci., No. 4, 29–35 (2006).

    Google Scholar 

  2. E. Ma, “Eight routes to improve the tensile ductility of bulk nanostructured metals and alloys,” JOM, No. 4, 49–53 (2006).

    Google Scholar 

  3. R. A. Andrievskii and A. M. Glezer, “Strength of nanostructures,” Phys.-Usp. 52, 315–334 (2009).

    Article  Google Scholar 

  4. S. K. Panigrahi, R. Jayaganthan, and V. Pancholi, “Effect of plastic deformation conditions on microstructural characteristics and mechanical properties of Al 6063 alloy,” Mater. Des. 30 1894–1901 (2009).

    Article  Google Scholar 

  5. S. V. Krymskiy, E. V. Avtokratova, O. Sh. Sitdikov, and M. V. Markushev, “Hardness of cryorolled and artificially aged D16 aluminum alloy,” Pis’ma Mater. 2(1), 45–48 (2012).

    Google Scholar 

  6. I. Sabirov, M. Yu. Murashkin, and R. Z. Valiev, Nanostructured aluminum alloys produced by svere plastic deformation. New horizons in development, Mater Sci. Eng., A 5601–24 (2013).

    Article  Google Scholar 

  7. Y. Huang and P. B. Prangnell, “The effect of cryogenic temperature and change in deformation mode on the limiting grain size in a severely deformed dilute aluminum alloy,” Acta Mater. 56, 1619–1632 (2008).

    Article  Google Scholar 

  8. R. Z. Valiev and I. V. Aleksandrov, Bulk Nanostructured Metallic Materials (Akademkniga, Moscow, 2007) [in Russian].

    Google Scholar 

  9. S. S. Gorelik, Recrystallization of Metals and Alloys (Metallurgiya, Moscow, 1987) [in Russian].

    Google Scholar 

  10. T. Sakai and J. J. Jonas, “Dynamic recrystallization: Mechanical and microstructural considerations,” Acta Metall. 32, 189–209 (1984).

    Article  Google Scholar 

  11. S. Gourdet and F. Montheillet, “An experimental study of the recrystallization mechanism during hot deformation of aluminum,” Mater. Sci. Eng., A 283, 274–288 (2000).

    Article  Google Scholar 

  12. P. B. Prangnell, J. R. Bowen, and P. J. Apps, “Ultrafine grain structures in aluminum alloys by severe deformation processing,” Mater. Sci. Eng., A 375–377, 178–185 (2004).

    Article  Google Scholar 

  13. O. Sitdikov, T. Sakai, E. Avtokratova, R. Kaibyshev, K. Tsuzaki, and Y. Watanabe, “Microstructure behavior of Al-Mg-Sc alloy processed by ECAP at elevated temperature,” Acta Mater. 56, 821–834 (2008).

    Article  Google Scholar 

  14. C. Kobayashi, T. Sakai, A. Belyakov, and H. Miura, “Ultrafine grain development in copper during multidirectional forging at 195 K,” Philos. Mag. Lett 87, 751–766 (2007).

    Article  Google Scholar 

  15. S. Cheng, Y. H. Zhao, Y. T. Zhu, and E. Ma, “Optimizing the strength and ductility of fine structured 2024 Al alloy by nano-precipitation,” Acta Mater. 55, 5822–5832 (2007).

    Article  Google Scholar 

  16. J. Yin, J. Lu, H. Ma, and P. Zhang, “Nanostructural formation of fine grained aluminum alloy by severe plastic deformation at cryogenic temperature,” J. Mater. Sci. 39, 2851–2854 (2004).

    Article  Google Scholar 

  17. Y.-H. Zhao, X.-Z. Liao, S. Cheng, E. Ma, and Y. T. Zhu, “Simultaneously increasing the ductility and strength of nanostructured alloys,” Adv. Mater. 18, 2280–2283 (2006).

    Article  Google Scholar 

  18. F. J. Humphreys, “Grain and subgrain characterization by electron backscatter diffraction,” J. Mater. Sci. 36, 3833–3854 (2001).

    Article  Google Scholar 

  19. F. J. Humphreys, “Characterization of fine-scale microstructures by electron backscatter diffraction (EBSD),” Scr. Mater. 51, 771–776 (2004).

    Article  Google Scholar 

  20. Electron Backscatter Diffraction in Material Science, Ed. by A. J. Shwarz, M. Kumar, B. L. Adams, and D. Fild, (Springer, New York, 2009; Tekhnosfera, Moscow, 2014).

    Google Scholar 

  21. H. M. Rietveld, “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. 2, 65–71 (1969).

    Article  Google Scholar 

  22. R. A. Young, The Rietveld Method (University, Oxford, 1993).

    Google Scholar 

  23. http://www.ing.unitn.it/~maud/index.html

  24. J. Gubicza, N. Q. Chin, Gy. Krallics, I. Schiller, and T. Ungar, “Microstructure of ultrafine-grained fcc metals produced by severe plastic deformation,” Curr. Appl. Phys. 6, 194–199 (2006).

    Article  Google Scholar 

  25. K. Zhang, K. Lu, I. V. Alexandrov, and R. Z. Valiev, “Structural characterization of nanocrystalline copper by means of X-ray diffraction,” J. Appl. Phys. 80, 5617–5624 (1996).

    Article  Google Scholar 

  26. A. P. Zhilyaev and T. G. Langdon, “Using high-pressure torsion for metal processing: Fundamentals and applications,” Prog. Mater. Sci. 53, 893–979 (2008).

    Article  Google Scholar 

  27. H. Jazaeri and F. J. Humphreys, “The transition from discontinuous to continuous recrystallization in some aluminum alloys: I. Deformed state,” Acta Mater. 52, 3239–3250 (2004).

    Article  Google Scholar 

  28. S. Krymskiy, O. Sitdikov, E. Avtokratova, M. Murashkin, and M. Markushev, “Strength of cryorolled commercial heat hardenable aluminum alloy with multilevel nanostructure,” Rev. Adv. Sci. Mater. 31, 145–150 (2012).

    Google Scholar 

  29. O. Sitdikov, E. Avtokratova, T. Sakai, and K. Tsuzaki, “Ultra fine-grain structure formation in an Al-Mg-Sc alloy during warm ECAP,” Metall. Mater. Trans. A 44, 1087–1100 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Krymskiy.

Additional information

Original Russian Text © S.V. Krymskiy, E.V. Avtokratova, O.Sh. Sitdikov, A.V. Mikhaylovskaya, M.V. Markushev, 2015, published in Fizika Metallov i Metallovedenie, 2015, Vol. 116, No. 7, pp. 714–722.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krymskiy, S.V., Avtokratova, E.V., Sitdikov, O.S. et al. Structure of the aluminum alloy Al-Cu-Mg cryorolled to different strains. Phys. Metals Metallogr. 116, 676–683 (2015). https://doi.org/10.1134/S0031918X15050105

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X15050105

Keywords

Navigation