Skip to main content
Log in

Investigation of the structure stability and superelastic behavior of thermomechanically treated Ti-Nb-Zr and Ti-Nb-Ta shape-memory alloys

  • Strength and Plasticity
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The superelastic parameters of Ti-Nb-Ta and Ti-Nb-Zr alloys, such as Young’s modulus, residual strain, and transformation yield stress after thermomechanical treatment (TMT), were determined during cyclic mechanical tests using the tension-unloading scheme (maximum strain 2% per cycle, ten cycles). The superelastic parameters and the alloy structure have been studied by electron microscopy and X-ray diffraction analysis before and after testing and after holding for 40 days, as well as after retesting. The Young’s modulus of the Ti-Nb-Ta alloy decreases from 30–40 to 20–25 GPa during mechanocycling after TMT by different modes; however, it returns to its original magnitude during subsequent holding for 40 days, and changes only a little during repeated mechanocycling. The Young’s modulus of the Ti-Nb-Zr alloy changes insignificantly during mechanocycling, recovers during holding, and behaves stably upon repeated mechanocycling. Surface tensile stresses arise during mechanocycling, which facilitate the development of martensitic transformation under load, orient it, and thereby promote a decrease in the transformation yield stress and the residual strain. The enhancement of the level of initial strengthening stabilizes the superelastic behavior during mechanocycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Handbook of Materials for Medical Devices, Ed. by J. R. Davis (ASM Int., Materials Park, 2003).

    Google Scholar 

  2. Shape Memory Implants, Ed. by L. Jahia (Springer-Verlag, New York, 2000).

    Google Scholar 

  3. S. Miyazaki, H. Y. Kim, and H. Hosoda, “Development and characterization of Ni-free Ti-base shape memory and superelastic alloys,” Mater. Sci. Eng., A 438–440, 18–24 (2006).

    Article  Google Scholar 

  4. J. I. Kim, H. Y. Kim T. Inamura, H. Hosoda, and S. Miyazaki, “Shape memory characteristics of Ti-22Nb-(2–8)Zr(at %) biomedical alloys,” Mater. Sci. Eng., A 403, 334–339 (2005).

    Article  Google Scholar 

  5. H. Y. Kim, S. Hashimoto, J. I. Kim, T. Inamura, H. Hosoda, and S. Miyazaki, “Effect of Ta addition on shape memory behavior of Ti-22Nb alloy,” Mater. Sci. Eng., A 417, 120–128 (2006).

    Article  Google Scholar 

  6. V. Brailovski, S. Prokoshkin, K. Inaekyan, S. Dubinskiy, and M. Gauthier, “Mechanical properties of thermomechanically processed metastable beta Ti-Nb-Zr alloys for biomedical applications,” Mater. Sci. Forum 706–709, 455–460 (2012).

    Article  Google Scholar 

  7. S. Miyazaki, K. Otsuka, and Y. Suzuki, “Transformation pseudoelasticity and deformation behavior in Ti-50.6 at % Ni,” Scr. Metall. 15, 287–292 (1981).

    Article  Google Scholar 

  8. S. D. Prokoshkin, I. Yu. Khmelevskaya, V. Brailovski, F. Trochu, S. Turenne, and V. Yu. Turilina, “Thermomechanical treatments and their influence on the microstructure and stress/strain diagrams of NiTi shape memory alloys,” Can. Met. Quart. 13, 95–108 (2004).

    Article  Google Scholar 

  9. V. Brailovski, S. Prokoshkin, I. Yu. Khmelevskaya, K. E. Inaekyan, V. Demers, S. Dobatkin, and E. Tatyanin, “Structure and properties of the Ti-50.0 at % Ni alloy after strain hardening and nanocrystallizing thermomechanical processing,” Mater. Trans. 47, 795–804 (2006).

    Article  Google Scholar 

  10. V. Brailovski, S. D. Prokoshkin, I. Yu. Khmelevskaya, K. E. Inaekyan, V. Demers, E. Bastarache, S. V. Dobatkin, and E. V. Tatyanin, “Interrelations between the properties and structure of thermomechanicallytreated equiatomic Ti-Ni alloy,” Mater. Sci. Eng., A 438-440, 597–601 (2006).

    Article  Google Scholar 

  11. V. Demers, V. Brailovski, S. D. Prokoshkin, and K. E. Inaekyan, “Thermomechanical fatigue of nanostructured Ti-Ni shape memory alloys,” Mater. Sci. Eng., A 513-514, 185–196 (2009).

    Article  Google Scholar 

  12. K. E. Inaekyan, S. D. Prokoshkin, V. Brailovski, I. Yu. Khmelevskaya, V. Demers, S. V. Dobatkin, E. V. Tatyanin, and E. Bastarache, “Substructure and nanocrystalline structure effects in thermomechanically treated Ti-Ni alloys,” Mater. Sci. Forum 503–504, 597–602 (2006).

    Article  Google Scholar 

  13. S. M. Dubinskiy, S. D. Prokoshkin, V. Brailovski, K. E. Inaekyan, A. V. Korotitskiy, M. R. Filonov, and M. I. Petrzhik, “Structure formation during thermomechanical processing of Ti-Nb-(Zr, Ta) alloys and the manifestation of the shape-memory effect,” Phys. Met. Metallogr. 112, 503–516 (2011).

    Article  Google Scholar 

  14. S. M. Dubinskiy, V. Brailovski, S. Prokoshkin, V. Pushin, K. Inaekyan, V. Sheremetyev, M. Petrzhik, and M. Filonov, “Structure and properties of Ti-19.7Nb-5.8Ta shape memory alloy subjected to thermomechanical processing including aging,” J. Mater. Eng. Perf. 22, 2656–2664 (2013).

    Article  Google Scholar 

  15. Y. L. Hao, S. T. Li, S. Y. Sun, C. Y. Zheng, and R. Yang, “Elastic deformation of Ti-24Nb-4Zr-7.9Sn for biomedical applications,” Acta Biomater. 3, 277–286 (2007).

    Article  Google Scholar 

  16. V. A. Sheremetyev, S. M. Dubinskiy, Yu. S. Zhukova, V. Brailovski, M. I. Petrzhik, S. D. Prokoshkin, Yu. A. Pustov, and M. R. Filonov, “Mechanical and electrochemical characteristics of thermomechanically treated superelastic Ti-Nb-(Ta, Zr) alloys,” Metal. Sci. Heat Treat. 55, 100–108 (2013).

    Article  Google Scholar 

  17. S. D. Prokoshkin, V. Brailovski, M. I. Petrzhik, M. R. Filonov, and V. A. Sheremetyev, “Mechanocyclic and time stability of loading-unloading diagram parameters of nanostructured Ti-Nb-Ta and Ti-Nb-Zr SMA,” Mater. Sci. Forum 738739, 481–485 (2013).

    Article  Google Scholar 

  18. S. D. Prokoshkin, V. Brailovskii, S. Turenne, I. Yu. Khmelevskaya, A. V. Korotitskii, and I. B. Trubitsyna, “On the lattice parameters of the B19’ martensite in binary Ti-Ni shape-memory alloys,” Phys. Met. Metallogr. 96, 55–64 (2003).

    Google Scholar 

  19. S. D. Prokoshkin, A. V. Korotitskiy, V. Brailovski, S. Turenne, I. Yu. Khmelevskaya, and I. B. Trubitsyna, “On the lattice parameters of phases in binary Ti-Ni shape memory alloys,” Acta Mater. 52, 4479–4492 (2004).

    Article  Google Scholar 

  20. Yu. S. Zhukova, M. I. Petrzhik, and S. D. Prokoshkin, “Estimation of crystallographic strain limit during the reversible β → α″ martensitic transformation in titanium shape memory alloys,” Russ. Metall. (Metally), No. 11, 1056–1063 (2010).

    Google Scholar 

  21. V. Brailovski, S. D. Prokoshkin, K. E. Inaekyan, and V. Demers, “Functional properties of nanocrystalline, submicrocrystalline and polygonized Ti-Ni alloys processed by cold rolling and post-deformation annealing,” J. Alloys Compd. 509, 2066–2075 (2011).

    Article  Google Scholar 

  22. E. W. Collings, The Physical Metallurgy of Titanium Alloys (ASM, Metals Park, Ohio, 1984).

    Google Scholar 

  23. V. A. Erofeev, L. A. Monasevich, V. A. Pavskaya, and Yu. I. Pascal, “Phase-transformation hardening upon martensitic transformation in titanium nickelide,” Fiz. Met. Metalloved. 53, 963–965 (1982).

    Google Scholar 

  24. S. Miyazaki, Y. Igo, and K. Otsuka, “Effect of thermal cycling on the transformation temperatures of Ti-Ni alloys,” Acta Metall. 34, 2045–2051 (1986).

    Article  Google Scholar 

  25. J. Perkins, “Ti-Ni and Ti-Ni-X shape memory alloys,” Metals Forum 4, 153–163 (1981).

    Google Scholar 

  26. S. Kajiwara and T. Kikuchi, “Dislocation structures produced by reverse martensitic transformation in Cu-Zn alloy,” Acta Metall. 30, 589–598 (1982).

    Article  Google Scholar 

  27. S. D. Prokoshkin, V. Brailovski, A. V. Korotitskiy, K. E. Inaekyan, S. M. Dubinskiy, M. R. Filonov, and M. I. Petrzhik, “Formation of nanostructures in thermomechanically treated Ti-Ni and Ti-Nb-(Zr, Ta) SMAs and their roles in martensite crystal lattice changes and mechanical behavior,” J. All. Comp. 577, S418–S422 (2013).

    Article  Google Scholar 

  28. S. Dubinskiy, S. Prokoshkin, V. Brailovski, K. Inaekyan, and A. Korotitskiy, “In situ X-ray diffraction strain-controlled study of Ti-Nb-Zr and Ti-Nb-Ta shape memory alloys: Crystal lattice and transformation features,” Mater. Charact. 88, 127–142 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Prokoshkin.

Additional information

Original Russian Text © V.A. Sheremetyev, S.D. Prokoshkin, V. Brailovski, S.M. Dubinskiy, A.V. Korotitskiy, M.R. Filonov, M.I. Petrzhik, 2015, published in Fizika Metallov i Metallovedenie, 2015, Vol. 116, No. 4, pp. 437–448.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheremetyev, V.A., Prokoshkin, S.D., Brailovski, V. et al. Investigation of the structure stability and superelastic behavior of thermomechanically treated Ti-Nb-Zr and Ti-Nb-Ta shape-memory alloys. Phys. Metals Metallogr. 116, 413–422 (2015). https://doi.org/10.1134/S0031918X15040158

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X15040158

Keywords

Navigation