The Physics of Metals and Metallography

, Volume 116, Issue 4, pp 341–345 | Cite as

Relativistic first-principles study on spin and orbital magnetism of mattagamite (CoTe2)

  • Mahdi AfsharEmail author
  • Mohsen Sargolzaei
  • Amir H. A. Kordbacheh
Electrical and Magnetic Properties


We have demonstrated electronic and magnetic properties of CoTe2 compound in the framework of relativistic density functional theory using generalized gradient approximation (GGA). The spin and orbital magnetic moments of Co and Te atoms were obtained using full-potential local orbitals band structure scheme. We have found a partially quenched orbital moment of 0.096μB for Co atom in the local spin density approximation. In order to improve the intrinsic deficiency of local density approximation for describing orbital magnetism, an orbital polarization correction was applied to CoTe2 and a significant orbital moment of 0.153μB was found for Co atom in this compound.


orbital magnetism relativistic DFT paramagnetism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. D. Dudkin and V. I. Vaidanich, “Electrophysical properties of a number of compounds of the Mtrans B2 type,” Proc. 4th All-Union Conf. Semicond. Mater. (Consult. Bureau, New York, 1963).Google Scholar
  2. 2.
    E. Vandenbempt, L. Pauwels, K. de Clippeleir, “Proprietes magnetiques et schemas electroniques des seleniures et des tellurures de Co et de Ni,” Bull. Soc. Chim. Belg. 80, 283 (1971).CrossRefGoogle Scholar
  3. 3.
    J. Li, X. Tang, L. Song, Y. Zhu, and Y. Qian, “From Te nanotubes to CoTe2 nanotubes: A general strategy for the formation of 1D metal telluride nanostructures,” J. Cryst. Growth 311, 4467–4472 (2009).CrossRefGoogle Scholar
  4. 4.
    Yi Xie, Bin Li, Huilan Su, Xianming Liu, Yitai Qian, “Solvothermal route to CoTe2 nanorods,” Nanostruct. Mater. 11, 539–544 (1999).CrossRefGoogle Scholar
  5. 5.
    H. Haraldsen, F. Grønvold, and T. Hurlen, “Eine röntgenographische und magnetische Untersuchung des Systems Kobalt/Tellur,” Z. Anorg. Allg. Chem. 283, 143–164 (1956).CrossRefGoogle Scholar
  6. 6.
    A. Kjekshus and D. G. Nicholson, “The 125Te Mössbauer effect in FeTe2, CoTe2, and RuTe2,” Acta Chem. Scand. 26, 3241–3244 (1972).CrossRefGoogle Scholar
  7. 7.
    J. A. R. Cheda, E. F. Westrum, and F. Grønvold, “Heat capacity and other thermodynamic properties of CoTe2 from 5 to 1030 K and of CoTe2.315 from 300 to 1040 K,” Monatsh. Chem., 117, 1223–1238 (1986).CrossRefGoogle Scholar
  8. 8.
    M. Richter, “Density functional theory applied to 4f and 5f elements and metallic compounds,” in Handbook of Magnetic Materials, Ed. by K. H. J. Buschow (North-Holland, Amsterdam, 2001), vol. 13, pp. 87–228.CrossRefGoogle Scholar
  9. 9.
    K. Koepernik and H. Eschrig, “Full-potential nonorthogonal local-orbital minimum-basis band-structure scheme,” Phys. Rev., B: Condens. Matter Mater. Phys. 59, 1743–1757 (1999). CrossRefGoogle Scholar
  10. 10.
    J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996); Errata: Phys. Rev. Lett. 78, 1396 (1997).CrossRefGoogle Scholar
  11. 11.
    I. Opahle, PhD thesis, Technische Universität Dresden, 2001; E. L. Eschrig, M. Richter, and L. Opahle, “Relativistic solid state calculations,” in Relativistic Electronic Structure Theory-Part II: Applications, Ed. by P. Schwerdtfeger (Elsevier, Amsterdam, 2004), p. 723.Google Scholar
  12. 12.
    M. B. Stearns, “Numerical data and functional relationships in science and technology,” in Landolt-Børnstein-Vol. 32, Group III Condensed Matter Series, Ed. by H. P. J. Wijn (Springer-Verlag, Berlin, 1986).Google Scholar
  13. 13.
    M. S. S. Brooks, “Calculated ground state properties of light actinide metals and their compounds,” Physica B: Condens. Matter 130, 6, (1985).CrossRefGoogle Scholar
  14. 14.
    O. Eriksson, B. Johansson, and M. S. S. Brooks, “Meta-magnetism in UCoAl,” J. Phys.: Condens. Matter 1, 4005–4011 (1989).Google Scholar
  15. 15.
    H. Eschrig, M. Sargolzaei, K. Koepernik, and M. Richter, “Orbital polarization in the Kohn-Sham-Dirac theory,” Europhys. Lett. 72, 611–617 (2005).CrossRefGoogle Scholar
  16. 16.
    M. Sargolzaei, Orbital Polarization in Relativistic Density Functional Theory (Lambert Academic, Saarbrücken, Germany, 2010).Google Scholar
  17. 17.
    P. Terzieff and E. L. Schicketanz, “Lattice parameter and electronic properties of the solid solution CoSb2 and CoTe2,” J. Alloys Compd. 232, 26–31, (1996).CrossRefGoogle Scholar
  18. 18.
    M. Muhler, W. Bensch, and M. Schur, “Preparation, crystal structures, experimental and theoretical electronic band structures of cobalt tellurides in the composition range CoTe1.3-CoTe2,” J. Phys.: Condens. Matter 10, 2947–2962 (1998).Google Scholar
  19. 19.
    J. B. J. Goodenough, “Energy bands in TX 2 compounds with pyrite, marcasite, and arsenopyrite structures,” J. Solid State Chem. 5, 144–152 (1972).CrossRefGoogle Scholar
  20. 20.
    E. L. Ebert, R. Zeller, B. Drittler, and P. H. Dederichs, “Fully relativistic calculation of the hyperfine fields of 5d-impurity atoms in ferromagnetic Fe,” J. Appl. Phys. 67, 4576–4578 (1990).CrossRefGoogle Scholar
  21. 21.
    E. Francisco and L. Pueyo, “Accurate calculation of spin-orbit coupling constants for 3d atoms and ions with effective core potentials and reduced basis sets,” Phys. Rev. A: Atom., Molec., Optic Phys. 36, 1978–1982 (1987).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • Mahdi Afshar
    • 1
    Email author
  • Mohsen Sargolzaei
    • 2
  • Amir H. A. Kordbacheh
    • 1
  1. 1.Materials Simulation Laboratory, Department of PhysicsIran University of Science and TechnologyNarmakTehran, Iran
  2. 2.Department of ChemistryShahrood University of TechnologyShahroodIran

Personalised recommendations