Advertisement

The Physics of Metals and Metallography

, Volume 116, Issue 4, pp 367–377 | Cite as

Interface relief upon explosion welding: Splashes and waves

  • B. A. Greenberg
  • M. A. Ivanov
  • A. V. Inozemtsev
  • S. V. Kuz’min
  • V. I. Lysak
  • A. M. Vlasova
  • M. S. Pushkin
Structure, Phase Transformations, and Diffusion

Abstract

For copper-tantalum, aluminum-tantalum, and magnesium-titanium joints the character of the interface relief has been investigated in different regimes of explosion welding at, below, and above the lower limit of weldability. It has been found for the first time that protrusions on the plane interface have the shape of splashes. This shape is unusual with allowance for the fact that protrusions arise from the solid phase that experienced no melting. Upon transitioning to the region below the lower limit, the number of splashes decreases and they prove to be insufficient to provide weldability. Upon transitioning to a region somewhat above the lower limit, the interface becomes quasi-wavy and inhomogeneous and, in some places, in addition to the wavy surface, splashes are also observed. Splashes and waves have been observed simultaneously for the first time. Models that describe possible variants of their interrelation have been proposed.

Keywords

explosion welding interface protrusions splashes waves lower limit of weldability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. A. Greenberg, M. A. Ivanov, V. V. Rybin, A. V. Inozemtsev, O. V. Antonova, O. A. Elkina, A. M. Patselov, S. V. Kuz’min, V. I. Lysak, and V. E. Kozhevnikov, “Inhomogeneities of the interface produced by explosive welding,” Phys. Met. Metallogr. 113, 176–189 (2012).CrossRefGoogle Scholar
  2. 2.
    B. A. Greenberg, M. A. Ivanov, V. V. Rybin, O. A. Elkina, O. V. Antonova, A. M. Patselov, A. V. Inozemtsev, A. V. Plotnikov, A. Yu. Volkova, and Yu. P. Besshaposhnikov, “The problem of intermixing of metals possessing no mutual solubility upon explosion welding (Cu-Ta, Fe-Ag, Al-Ta),” Mater. Character. 75, 51–62 (2013).CrossRefGoogle Scholar
  3. 3.
    B. A. Greenberg, M. A. Ivanov, V. V. Rybin, O. A. Elkina, A. M. Patselov, O. V. Antonova, A. V. Inozemtsev, and T. P. Tolmachev, “Fragmentation processes during explosion welding,” Russ. Metall. 10, 727–737 (2013).CrossRefGoogle Scholar
  4. 4.
    B. A. Greenberg, M. A. Ivanov, A. M. Patselov, and Yu. P. Besshaposhnikov, “The processes of fragmentation, intermixing and fusion upon explosion welding,” AASRI Procedia 3, 66–72 (2012).CrossRefGoogle Scholar
  5. 5.
    B. A. Greenberg, M. A. Ivanov, V. V. Rybin, S. V. Kuz’min, V. I. Lysak, O. A. Elkina, A. M. Patselov, O. V. Antonova, A. V. Inozemtsev, A. Yu. Volkova, and A. V. Plotnikov, “Dissipative structures at explosive welding,” Izv. Volg-GTU, Ser. Svarka Vzryv. Svoist. Svaroch. Soed., Issue 5, No. 14, 27–43 (2012).Google Scholar
  6. 6.
    B. A. Greenberg, O. A. Elkina, A. M. Patselov, A. V. Plotnikov, Ya. G. Smorodinskii, M. A. Ivanov, and Yu. P. Besshaposhnikov, “Processes and structures upon explosive welding,” Svarka Diagnost., No. 2, 35–40 (2013).Google Scholar
  7. 7.
    M. I. Gel’fman, O. V. Kovalevich, and V. P. Yustratov, Colloid Chemistry (Lan’, St. Petersburg, 2004) [in Russian].Google Scholar
  8. 8.
    D. Frey and J. Banker, “Recent successes in tantalum clad pressure vessel manufacture: A new generation of tantalum clad vessels,” Proc. Corrosion Solutions Conf. 2003 (Wah Chang, USA, 2003), pp. 163–169.Google Scholar
  9. 9.
    B. A. Greenberg, O. A. Elkina, O. V. Antonova, A. V. Inozemtsev, M. A. Ivanov, V. V. Rybin, and V. E. Kozhevnikov, “Peculiarities of formation of transition zone structure of Cu-Ta compound obtained by explosive welding,” Avtomat. Svarka, No. 7, 24–31 (2011).Google Scholar
  10. 10.
    B. A. Greenberg, M. A. Ivanov, V. V. Rybin, O. A. Elkina, A. M. Patselov, O. V. Antonova, A. V. Inozemtsev, G. A. Salishchev, and V. E. Kozhevnikov, “Transition zone structure upon explosive welding,” Deform. Razrush. Mater., No. 9, 34–40 (2011).Google Scholar
  11. 11.
    B. A. Greenberg, O. A. Elkina, A. M. Patselov, A. V. Inozemtsev, A. V. Plotnikov, A. Yu. Volkova, M. A. Ivanov, V. V. Rybin, and Yu. P. Besshaposhnikov, “Problems of mixing and melting upon explosive welding (aluminum-tantal),” Avtomat. Svarka, No. 9, 15–22 (2012).Google Scholar
  12. 12.
    A. Yu. Volkova, B. A. Greenberg, M. A. Ivanov, O. A. Elkina, A. V. Inozemtsev, A. V. Plotnikov, A. M. Patselov, and V. E. Kozhevnikov, “Electronmicroscopic examination of the transition zone of aluminum-tantalum bimetallic joints (explosion welding),” Phys. Met. Metallogr. 115, 380–391 (2014).CrossRefGoogle Scholar
  13. 13.
    I. D. Zakharenko, Explosion Welding of Metals (Nauka i Tekhnika, Minsk, 1990) [in Russian].Google Scholar
  14. 14.
    V. I. Lysak and S. V. Kuz’min, Welding by Explosion (Mashinostroenie, Moscow, 2005) [in Russian].Google Scholar
  15. 15.
    V. I. Lysak and S. V. Kuzmin, “Lower boundary in metal explosive welding. Evolution of ideas,” J. Mater. Process. Techn. 212, 150–156 (2012).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • B. A. Greenberg
    • 1
  • M. A. Ivanov
    • 2
  • A. V. Inozemtsev
    • 1
  • S. V. Kuz’min
    • 3
  • V. I. Lysak
    • 3
  • A. M. Vlasova
    • 1
    • 4
  • M. S. Pushkin
    • 1
  1. 1.Institute of Metal Physics, Ural BranchRussian Academy of SciencesEkaterinburgRussia
  2. 2.Kurdjumov Institute of Metal PhysicsNational Academy of Sciences of UkraineKiev-142Ukraine
  3. 3.Volgograd State Technical UniversityVolgogradRussia
  4. 4.Yeltsin Ural Federal UniversityEkaterinburgRussia

Personalised recommendations