Skip to main content
Log in

Simulation of high-temperature superlocalization of plastic deformation in single-crystals of alloys with an L12 superstructure

  • Theory of Metals
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The processes of the superlocalization of plastic deformation in L12 alloys have been studied numerically based on a combination of the model of the dislocation kinetics of the deformation-induced and heat-treatment-induced strengthening of an element of a deformable medium with the model of the mechanics of microplastic deformation described in terms of elastoplastic medium. It has been shown that the superlocalization of plastic deformation is determined by the presence of stress concentrators and by the nonmonotonic strengthening of the elements of the deformable medium. The multiple nonmonotonicity of the process of strengthening of the elementary volume of the medium can be responsible for the multiplicity of bands of microplastic localization of deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Likhachev, V. E. Panin, E. E. Zasimchuk, V. I. Vladimirov, A. E. Romanov, V. V. Gorskii, S. I. Selitser, S. A. Firstov, and K. P. Ryabopashka, Cooperative Deformation Processes and Localization of Deformation (Naukova Dumka, Kiev, 1989) [in Russian].

    Google Scholar 

  2. S. N. Kolupaeva, V. A. Starenchenko, and L. E. Popov, Instabilities of Plastic Deformation of Crystals (Tomsk. Univ., Tomsk, 1994) [in Russian].

    Google Scholar 

  3. L. E. Popov, V. A. Starenchenko, and S. N. Kolupaeva, “Instabilities of crystal plastic deformation and formation of dislocation defect structures,” Vestn. Perm. Nats. Issled. Politekh. Univ. Mekhanika, No. 3, 77–87 (1995).

    Google Scholar 

  4. D. V. Lychagin, V. A. Starenchenko, R. V. Shaekhov, N. A. Koneva, and E. V. Kozlov, “Evolution of deformation in nickel single crystals with the compression axis orientation [001] and lateral faces {110},” Fiz. Mezomekh. 8, 39–48 (2005).

    Google Scholar 

  5. Yu. V. Solov’eva, V. A. Starenchenko, B. I. Burtsev, M. V. Gettinger, and T. A. Kovalevskaya, “High-temperature superlocalization of plastic deformation in Ni3Ge intermetallic single crystals,” Bull. Russ. Acad. Sci.: Phys. 70, 1929–1931 (2006).

    Google Scholar 

  6. Yu. V. Solov’eva, M. V. Gettinger, S. V. Starenchenko, and V. A. Starenchenko “The creep behavior of single-crystalline Ni3Ge alloys,” Russ. Phys. J. 52, 390–397 (2009).

    Article  Google Scholar 

  7. V. A. Starenchenko, Yu. V. Solov’eva, Ya. D. Fakhrutdinova, and L. A. Valuiskaya, “Superlocalization of deformation in Ni3Ge single crystals with the L12 superstructure,” Russ. Phys. J. 55, 69–83 (2012).

    Article  Google Scholar 

  8. V. A. Starenchenko, O. D. Pantyukhova, D. N. Cherepanov, Yu. V. Solov’eva, S. V. Starenchenko, and M. I. Slobodskoi, Models of Plastic Deformation of Materials with fcc-Structure (Izd-vo NTL, Tomsk, 2011) [in Russian].

    Google Scholar 

  9. V. A. Starenchenko, Yu. V. Solov’eva, Yu. A. Abzaev, V. I. Nikolaev, and V. V. Shpeizman, “Accumulation of dislocations and thermal strengthening of alloys having an L12 superstructure,” Phys. Solid State 41, 407–412 (1999).

    Article  Google Scholar 

  10. N. N. Belov, N. T. Yugov, D. G. Kopanitsa, and A. A. Yugov, Dynamics of High-Speed Impact and Attendant Physical Phenomena (Izd-vo STT, Northampton-Tomsk, 2005) [in Russian].

    Google Scholar 

  11. V. A. Starenchenko, Yu. V. Solov’eva, Ya. D. Fakhrutdinova, and L. A. Valuiskaya, “Model of macroscopic strain localization in alloys with L12 structure,” Russ. Phys. J. 54, 885–897 (2011).

    Article  Google Scholar 

  12. L. I. Sedov, Mechanics of Continuous Media, Vol. 1–2 (Nauka, Moscow, 1973)[in Russian].

    Google Scholar 

  13. N. N. Belov, V. N. Demidov, and L. V. Efremova, “Computer simulation of high-speed impact and accompanying physical phenomena,” Izv. Vyssh. Uchebn. Zaved., Fiz. 35, 5–48 (1992).

    Google Scholar 

  14. N. N. Belov, O. V. Kabantsev, D. G. Kopanitsa, and N. T. Yugov, Calculation-Experimental Method of Analysis of Dynamic Strength of Ferroconcrete-Construction Elements (Izd-vo STT, Tomsk, 2008) [in Russian].

    Google Scholar 

  15. A. A. Pozdeev, P. V. Trusov, and Yu. I. Nyashin, Large Elastic-Plastic Deformations: Theory, Algorithms, Applications (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  16. Zel’dovich, Ya.B. and Raizer, Yu.P., Physics of Shock Waves and of High-Temperature Hydrodynamic Phenomena (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

  17. V. N. Zharkov and V. A. Kalinin, Equations of State of Solids at High Pressures and Temperatures (Nauka, Moscow, 1968) [in Russian].

    Google Scholar 

  18. R. McQueen, S. Marsh, J. Teilor, J. Fritts, and W. Carter, “Ch. VII. The Equation of State of Solids from Shock Wave Studies,” in High-Velocity Impact Phenomena, Ed. by R. Kingslow (Academic, New York, 1970; Mir, Moscow, 1973).

    Google Scholar 

  19. M. L. Wilkins, “Calculation of elastic-plastic flows,” in Methods in Computational Physics. Advances in Research and Applications. Vol. 3, Fundamental Methods in Hydrodynamics, Ed. by B. Alder, S. Fernbach, and M. Rotenberg (Academic, New York, 1964; Mir, Moscow, 1967).

    Google Scholar 

  20. J. Mainchen and S. Sak, “Calculation method “Tenzor”,” in Methods in Computational Physics. Advances in Research and Applications. Vol. 3, Fundamental Methods in Hydrodynamics, Ed. by B. Alder, S. Fernbach, and M. Rotenberg (Academic, New York, 1964; Mir, Moscow, 1967).

    Google Scholar 

  21. N. T. Yugov, N. N. Belov, and A. A. Yugov, “Calculation of adiabatic nonstationary flows in the three-dimensional formulation (RANET-3),” Program package for EVM, Federal sluzba po intellektual’noi sobstvennosti, patentam i tovarnym znakam. Sertificate on State Registration of the Program for EVM no. 2010611042 (2010).

    Google Scholar 

  22. N. N. Belov, D. G. Kopanitsa, and N. T. Yugov, Mathematical Simulation of Dynamic Strength of Structural Materials. Vol. 3. Physics of Shock Waves. Dynamical Destruction of Solids (Izd-vo STT, Tomsk, 2008) [in Russian].

    Google Scholar 

  23. N. N. Belov, L. A. Valuiskaya, V. A. Starenchenko, and N. T. Yugov, “The computer simulation of the dynamics of uniaxial tension and compression of cylindrical rods made of the Ni3Fe alloy,” Mekh. Kompozit. Mater. Konstr. 14, 419–429 (2008).

    Google Scholar 

  24. J. T. Oden, Finite Elements of Nonlinear Continua (McGraw-Hill, New York, 1972; Dover, Mineola, N.Y., 2006; Mir, Moscow, 1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Solov’eva.

Additional information

Original Russian Text © Yu.V. Solov’eva, Ya.D. Fakhrutdinova, V.A. Starenchenko, 2015, published in Fizika Metallov i Metallovedenie, 2015, Vol. 116, No. 1, pp. 12–20.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solov’eva, Y.V., Fakhrutdinova, Y.D. & Starenchenko, V.A. Simulation of high-temperature superlocalization of plastic deformation in single-crystals of alloys with an L12 superstructure. Phys. Metals Metallogr. 116, 10–18 (2015). https://doi.org/10.1134/S0031918X15010111

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X15010111

Keywords

Navigation