Skip to main content
Log in

Nanostructure evolution in ODS Eurofer steel under irradiation up to 32 dpa

  • Structure, Phase Transformations, and Diffusion
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The nanostructure of the ODS Eurofer steel (9% CrWVTa + 0.5% Y2O3) has been studied after irradiation by iron ions to a damaging dose of 32 dpa. This steel in the initial state is characterized by the presence of a significant amount (∼1024 m−3) of nanosized (2–4 nm) clusters containing atoms of V, Y, O, and N. An analysis of the distribution of various chemical elements in the tested volumes has revealed variations in the composition of the matrix and of the nanosized clusters during irradiation. The data obtained were compared with the results for the ODS Eurofer steel subjected to reactor irradiation to a dose of 32 dpa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Lindau, A. Moslang, M. Schirra, P. Schlossmacher, and M. Klimenkov, “Mechanical and microstructural properties of a hipped RAFM ODS-steel,” J. Nucl. Mater. 307–311, 769–772 (2002).

    Article  Google Scholar 

  2. R. L. Klueh, P. J. Maziasz, I. S. Kim, L. Heatherly, D. T. Hoelzer, and N. Hashimoto, “Tensile and creep properties of an oxide dispersion-strengthened ferritic steel,” J. Nucl. Mater. 307–311, 773–777 (2002).

    Article  Google Scholar 

  3. R. Lindau, A. Moslang, M. Rieth, M. Klimiankou, E. Materna-Morris, A. Alamo, A. A. F. Tavassoli, C. Cayron, A. M. Lancha, P. Fernandez, N. Baluc, R. Schaeublin, E. Diegele, G. Filacchioni, J. W. Rensman, B. V. D. Schaaf, E. Lucon, and W. Dietz, “Present development status of EUROFER and ODS-EUROFER for application in blanket concepts,” Fusion Eng. Des. 75–79, 989–996 (2005).

    Article  Google Scholar 

  4. L. Debarberis, B. Acosta, A. Zeman, F. Sevini, A. Ballesteros, A. Kryukov, F. Gillemot, and M. Brumovsky, “Analysis of WWER-440 and PWR RPV welds surveillance data to compare irradiation damage evolution,” J. Nucl. Mater. 350, 173–181 (2006).

    Article  Google Scholar 

  5. S. V. Rogozhkin, A. A. Nikitin, A. A. Aleev, A. G. Zaluzhnyi, A. A. Chernobaeva, D. Yu. Erak, Ya. I. Shtrombakh, and O. O. Zabusov, “Study of the thin structure of welded seam with high content of phosphorus of WWER-440 reactor vessel after annealing and repeated irradiation,” Yadern. Fiz. Inzhinir. 4, 73–82 (2013).

    Google Scholar 

  6. A. Kryukov, L. Debarberis, A. Ballesteros, V. Krsjak, R. Burcl, S. V. Rogozhkin, A. A. Nikitin, A. A. Aleev, A. G. Zaluzhnyi, V. I. Grafutin, O. Ilyukhina, Yu. V. Funtikov, and A. Zeman, “Integrated analysis of WWER-440 RPV weld re-embrittlement after annealing,” J. Nucl. Mater. 429, 190–200 (2012).

    Article  Google Scholar 

  7. R. Schaeublin, T. Leguey, P. Spatig, N. Baluc, and M. Victoria, “Microstructure and mechanical properties of two ODS ferritic/martensitic steels,” J. Nucl. Mater. 307–311, 778–782 (2002).

    Article  Google Scholar 

  8. C. Petersen, V. Shamardin, A. Fedoseev, G. Shimansky, V. Efimov, and J. J. Rensman, “The ARBOR irradiation project,” J. Nucl. Mater. 307–311, 1655–1659 (2002).

    Article  Google Scholar 

  9. C. Petersen, A. Povstyanko, V. Prokhorov, A. Fedoseev, O. Makarov, and B. Dafferner, “Impact property degradation of ferritic/martensitic steels after the fast reactor irradiation ‘ARBOR 1’,” J. Nucl. Mater. 367–370, 544–549 (2007).

    Article  Google Scholar 

  10. J. Henry, X. Averty, and A. Alamo, “Tensile and impact properties of 9Cr tempered martensitic steels and ODS-FeCr alloys irradiated in a fast reactor at 325°C up to 78 dpa,” J. Nucl. Mater. 417, 99–103 (2011).

    Article  Google Scholar 

  11. M. Klimenkov, R. Lindau, and A. Moslang, “HRTEM study of yttrium oxide particles in ODS steels for fusion reactor application,” J. Cryst. Growth 249, 381–387 (2003).

    Article  Google Scholar 

  12. A. A. Aleev, N. A. Iskandarov, M. Klimenkov, R. Lindau, A. Moslang, A. A. Nikitin, S. V. Rogozhkin, P. Vladimirov, and A. G. Zaluzhnyi, “Investigation of oxide particles in unirradiated ODS Eurofer by tomographic atom probe,” J. Nucl. Mater. 409, 65–71 (2011).

    Article  Google Scholar 

  13. S. V. Rogozhkin, T. V. Kulevoi, N. A. Iskandarov, N. N. Orlov, B. B. Chalykh, A. A. Aleev, N. Yu. Grachev, R. P. Kuibida, A. A. Nikitin, A. D. Fertman, and V. B. Shishmarev, “Simulation experiment on the study of the radiation resistance of a promising ferritic-martensitic steel strengthened by disperse inclusions,” At. Energy 114, 14–20 (2013).

    Article  Google Scholar 

  14. S. V. Rogozhkin, V. S. Ageev, A. A. Aleev, A. G. Zaluzhnyi, M. V. Leont’eva-Smirnova, and A. A. Nikitin, “Tomographic atom probe analysis of temperature resistant 12% chromium ferritic-martensitic EK-181 steel,” Phys. Met. Metallogr. 108, 579–585 (2009).

    Article  Google Scholar 

  15. S. V. Rogozhkin, N. A. Iskandarov, A. A. Aleev, A.G. Zaluzhnyi, A. A. Nikitin, M. V. Leont’evaSmirnova, and E. M. Mozhanov, “Study of the nanoscale state of ferritic-martensitic steel Rusfer EK-181 after various heat treatments, Inorg. Mater.: Appl. Res. 3, 129–134 (2012).

    Article  Google Scholar 

  16. S. V. Rogozhkin, A. A. Aleev, A. G. Zaluzhnyi, A. A. Nikitin, N. A. Iskandarov, P. Vladimirov, R. Lindau, and A. Moslang, “Atom probe characterization of nano-scaled features in irradiated ODS Eurofer steel,” J. Nuclear Mater. 409, 94–99 (2011).

    Article  Google Scholar 

  17. S. V. Rogozhkin, A. A. Aleev, A. G. Zaluzhnyi, R. P. Kuibida, T. V. Kulevoi, A. A. Nikitin, N. N. Orlov, B. B. Chalykh, and V. B. Shishmarev, “Atom probe tomography of nanoscaled features of oxide-dispersion-strengthened (ODS) Eurofer steel under the action of heavy ion radiation,” Yadern. Fiz. Inzh. 3, 373–379 (2012).

    Google Scholar 

  18. S. V. Rogozhkin, A. A. Aleev, A. G. Zaluzhnyi, R. P. Kuibida, T. V. Kulevoi, A. A. Nikitin, N. N. Orlov, B. B. Chalykh, and V. B. Shishmarev, “Effect of irradiation by heavy ions on the nanostructure of perspective materials for nuclear power plants,” Phys. Met. Metallogr. 113, 200–211 (2012).

    Article  Google Scholar 

  19. T. Kulevoy, R. Kuibeda, G. Kropachev, A. Kozlov, B. Chalyh, A. Aleev, A. Fertman, A. Nikitin, and S. Rogozhkin, “ITEP MEVVA ion beam for reactor material investigation,” Rev. Sci. Instrum. 81, 02B906 (2010).

    Google Scholar 

  20. G. N. Kropachev, V. B. Shishmarev, R. P. Kuibida, B.B. Chalykh, S. V. Plotnikov, S. V. Rogozhkin, A. A. Aleev, A. A. Nikitin, N. N. Orlov, D. N. Seleznev, and T. V. Kulevoi, “Preparation of imitation experiment on iron ion beam for study of the radiation stability of reactor steels,” Yadern. Fiz. Inzhin. 2, 538–542 (2011).

    Google Scholar 

  21. M. K. Miller, Atom Probe Tomography: Analysis at the Atomic Level (Kluwer Academic, New York, 2000).

    Book  Google Scholar 

  22. A. Cerezo and L. Davin, “Aspects of the observation of clusters in the 3-dimensional atom probe,” Surf. Interface Anal. 39, 184–188 (2007).

    Article  Google Scholar 

  23. J. M. Hyde, E. A. Marquis, K. B. Wilford, and T. J. Williams, “A sensitivity analysis of the maximum separation method for the characterisation of solute clusters,” Ultramicroscopy 111, 440–447 (2011).

    Article  Google Scholar 

  24. S. V. Rogozhkin, A. A. Aleev, A. G. Zaluzhnyi, N. A. Iskandarov, A. A. Nikitin, P. Vladimirov, R. Lindau, and A. Moslang, “Atom probe tomography of nanoscaled features of oxide-dispersion-strengthened (ODS) Eurofer steel in the initial state and after neutron irradiation,” Phys. Met. Metallogr. 113, 98–105 (2012).

    Article  Google Scholar 

  25. M. Klimenkov, R. Lindau, and A. Moslang, “New insights into the structure of ODS particles in the ODS-Eurofer alloy,” J. Nucl. Mater. 386–388, 553–556 (2009).

    Article  Google Scholar 

  26. M. Klimiankou, R. Lindau, and A. Moslang, “Direct correlation between morphology of (Fe,Cr)23C6 precipitates and impact behavior of ODS steels,” J. Nucl. Mater. 367–370, 173–178 (2007).

    Article  Google Scholar 

  27. V. Castro, T. Leguey, A. Mucoz, M. A. Monge, P. Fernández, A. M. Lancha, and R. Pareja, “Mechanical and microstructural behavior of Y2O3 ODS Eurofer 97,” J. Nucl. Mater. 367–370, 196–201 (2007).

    Article  Google Scholar 

  28. S. Rogozkin, A. Chernobaeva, A. Aleev, A. Nikitin, A. Zaluzhnyi, D. Erak, Ya. Shtrombakh, O. Zabusov, L. Debarberis, and A. Zeman, “The effect of post-irradiation annealing on VVER-440 RPV materials mechanical properties and nanostructure under reirradiation,” Proc. PVP2009, 2009 ASME Pressure Vessels and Piping Division Conf., Prague, Czech Republic, 2009 PVP2009-78128.

  29. N. V. Luzginova, J. Rensman, P. Pierick, and J. B. J. Hegeman, “Irradiation response of ODS Eurofer 97 steel,” J. Nucl. Mater. 428, 192–196 (2012).

    Article  Google Scholar 

  30. D. A. McClintock, M. A. Sokolov, D. T. Hoelzer, and R. K. Nanstad, “Mechanical properties of irradiated ODS-Eurofer and nanocluster strengthened 14YWT,” J. Nucl. Mater. 392, 353–359 (2009).

    Article  Google Scholar 

  31. E. Lucon, A. Leenaers, and W. Vandermeulen, “Mechanical response of oxide dispersion strengthened (ODS) Eurofer-97 after neutron irradiation at 300°C,” Fusion Eng. Des. 82, 2438–2443 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Rogozhkin.

Additional information

Original Russian Text © S.V. Rogozhkin, N.N. Orlov, A.A. Aleev, A.G. Zaluzhnyi, M.A. Kozodaev, R.P. Kuibeda, T.V. Kulevoy, A.A. Nikitin, B.B. Chalykh, R. Lindau, A. Möslang, P. Vladimirov, 2015, published in Fizika Metallov i Metallovedenie, 2015, Vol. 116, No. 1, pp. 76–82.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogozhkin, S.V., Orlov, N.N., Aleev, A.A. et al. Nanostructure evolution in ODS Eurofer steel under irradiation up to 32 dpa. Phys. Metals Metallogr. 116, 72–78 (2015). https://doi.org/10.1134/S0031918X15010093

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X15010093

Keywords

Navigation