Skip to main content
Log in

Recrystallization of nickel upon heating below the temperature of thermoactivated nucleation

  • Structure, Phase Transformations, and Diffusion
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The main mechanisms of grain growth upon low-temperature recrystallization of pure nickel (99.98%) with structures of various types formed upon deformation in Bridgman anvils have been studied. A decrease in the amount of the stored energy of deformation at the stage of submicrocrystalline (SMC) structure has been revealed using the method of differential scanning calorimetry. The isothermal annealings with durations of up to 64 h made it possible to show that the low-temperature recrystallization in both the mixed and SMC structures is developed via the growth of separate centers that are formed during deformation. As a result, no homogeneous submicrograin structure is formed in nickel upon low-temperature recrystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. I. Noskova and R. R. Mulyukov, Submicrocrystalline and Nanocrystalline Metals and Alloys (Ural. Otd. Ross. Akad. Nauk, Ekaterinburg, 2003) [in Russian].

    Google Scholar 

  2. M. V. Degtyarev, L. M. Voronova, V. V. Gubernatorov, and T. I. Chashchukhina, “On the thermal stability of microcrystalline structure in single-phase metallic materials,” Dokl.-Phys. 47, 647–650 (2002).

    Article  Google Scholar 

  3. L. M. Voronova, M. V. Degtyarev, and T. I. Chashchukhina, “Recrystallization of the ultradispersed structure of pure iron formed at different stages of the deformation-induced strain hardening,” Phys. Met. Metallogr. 104, 262–273 (2007).

    Article  Google Scholar 

  4. N. A. Smirnova, V. I. Levit, V. P. Pilyugin, R. I. Kuznetsov, L. S. Davydova, and V. A. Sazonova, “Evolution of structure of fcc single crystals subjected to large plastic deformation,” Phys. Met. Metallogr. 61, 127–134 (1986).

    Google Scholar 

  5. V. P. Pilyugin, T. M. Gapontseva, T. I. Chashchukhina, L. M. Voronova, L. I. Shchinova, and M. V. Degtyarev, “Evolution of the structure and hardness of nickel upon cold and low-temperature deformation under pressure,” Phys. Met. Metallogr. 105, 409–419 (2008).

    Article  Google Scholar 

  6. A. Belyakov, K. Tsuzaki, H. Miura, and T. Sakai, “Effect of initial microstructures on grain refinement in a stainless steel by large strain deformation,” Acta Mater. 51, 847–861 (2003).

    Article  Google Scholar 

  7. N. A. Smirnova, V. I. Levit, V. P. Pilyugin, R. I. Kuznetsov, and M. V. Degtyarev, “The low temperature recrystallization of nickel and copper,” Phys. Met. Metallogr. 62, 140–144 (1986).

    Google Scholar 

  8. V. M. Bykov, V. A. Likhachev, Yu. A. Nikonov, L. L. Serbina, and L. I. Shibalova, “Fragmentation and dynamic recrystallization of copper at large and very large plastic deformations,” Fiz. Met. Metalloved. 45, 163–169 (1978).

    Google Scholar 

  9. T. I. Chashchukhina, M. V. Degtyarev, M. Yu. Romanova, and L. M. Voronova, “Dynamic recrystallization in copper deformed by shear under pressure,” Phys. Met. Metallogr. 98, 639–647 (2004).

    Google Scholar 

  10. I. A. Ditenberg, A. N. Tyumentsev, A. V. Korznikov, and E. A. Korznikova, “Microstructural evolution of nickel under high-pressure torsion,” Phys. Mezomech. 3, 239–247 (2013).

    Article  Google Scholar 

  11. M. A. Shtremel’, Strength of Alloys. Ch. 1. Lattice Defects (Metallurgiya, Moscow, 1982) [in Russian].

    Google Scholar 

  12. A. V. Korznikov, G. F. Korznikova, M. M. Myshlyaev, R. Z. Valiev, D. Salimonenko, and O. Dimitrov, “Evolution of nanocrystalline Ni structure during heating,” Phys. Met. Metallogr. 84, 413–417 (1997).

    Google Scholar 

  13. H. W. Zhang, X. Huang, R. Pippan, and N. Hansen, “Thermal behavior of Ni (99.967% and 99.5% purity) deformed to an ultra-high strain by high pressure torsion,” Acta Mater. 58, 1698–1707 (2010).

    Article  Google Scholar 

  14. A. A. Nazarova, R. R. Mulyukov, V. V. Rubanik, Yu. V. Tsarenko, and A. A. Nazarov, “Effect of ultrasonic treatment on the structure and properties of ultrafine-grained nickel,” Phys. Met. Metallogr. 110, 574–581 (2010).

    Article  Google Scholar 

  15. V. V. Popov, E. N. Popova, D. D. Kuznetsov, A. V. Stolbovskii, and V. P. Pilyugin, “Thermal stability of nickel structure obtained by high-pressure torsion in liquid nitrogen,” Phys. Met. Metallogr. 115, 682–691 (2014).

    Article  Google Scholar 

  16. M. V. Degtyarev, T. I. Chashchukhina, L. M. Voronova, A. M. Patselov, and V. P. Pilyugin, “Influence of the relaxation processes on the structure formation in pure metals and alloys under high-pressure deformation,” Acta Mater. 55, 6039–6050 (2007).

    Article  Google Scholar 

  17. V. I. Trefilov, V. F. Moiseev, E. P. Pechkovskii, I. D. Gornaya, and A. D. Vasil’ev, Stain Hardening and Fracture of Polycrystalline Metals (Naukova Dumka, Kiev, 1987) [in Russian].

    Google Scholar 

  18. Saltykov, S. A., Quantitative Metallography (Metallurgiya, Moscow, 1970) [In Russian].

    Google Scholar 

  19. A. P. Zhilyaev, G. V. Nurislamova, R. Z. Valiev, S. Lee, and T. G. Langdon, “Microhardness and microstructural evolution in pure nickel during high-pressure torsion,” Scr. Mater. 44, 2753–2758 (2001).

    Article  Google Scholar 

  20. S. S. Gorelik, Recrystallization of Metals and Alloys (Metallurgiya, Moscow, 1978) [in Russian].

    Google Scholar 

  21. M. V. Degtyarev, L. M. Voronova, and T. I. Chashchukhina, “Grain growth upon annealing of Armco iron with various ultrafine-grained structures produced by high-pressure torsion deformation,” Phys. Met. Metallogr. 99, 276–285 (2005).

    Google Scholar 

  22. M. V. Degtyarev, T. I. Chashchukhina, L. M. Voronova, L. S. Davydova, and V. P. Pilyugin, “Deformation strengthening and structure of structural steel upon shear under pressure,” Phys. Met. Metallogr. 90, 604–611 (2000).

    Google Scholar 

  23. L. M. Voronova, M. V. Degtyarev, and T. I. Chashchukhina, “Thermal stability of submicrocrystalline structure in 4Kh14N14V2M steel,” Phys. Met. Metallogr. 109, 135–141 (2010).

    Article  Google Scholar 

  24. V. Yu. Novikov, Secondary Recrystallization (Metallurgiya, Moscow, 1990) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. G. Krasnoperova.

Additional information

Original Russian Text © Yu.G. Krasnoperova, L.M. Voronova, M.V. Degtyarev, T.I. Chashchukhina, N.N. Resnina, 2015, published in Fizika Metallov i Metallovedenie, 2015, Vol. 116, No. 1, pp. 83–90.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krasnoperova, Y.G., Voronova, L.M., Degtyarev, M.V. et al. Recrystallization of nickel upon heating below the temperature of thermoactivated nucleation. Phys. Metals Metallogr. 116, 79–86 (2015). https://doi.org/10.1134/S0031918X15010081

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X15010081

Keywords

Navigation