Skip to main content
Log in

Using an intermediate nanocrystalline γ phase for producing austenitic steels with a controllable thermal expansion coefficient

  • Structure, Phase Transformations, and Diffusion
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The metastable austenitic iron alloy with 31.3 wt % Ni (N31) has been used to show the possibility of the formation of a nickel-concentration inhomogeneity in a fine-grained austenite due to an α → γ trans-formation under the condition of a preliminary formation of a nickel-enriched intermediate nanocrystalline γ phase. The thermal expansion coefficients (TECs) in the range of −100 to +300°C have been estimated in concentrationally inhomogeneous steel N31 after various heat treatments. The conditions necessary to ensure the possibility of controlling the TEC in wide limits have been found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Estrin and A. Vinogradov, “Extreme grain refinement by severe plastic deformation: A wealth of challenging science,” Acta Mater. 61, 782–817 (2013).

    Article  Google Scholar 

  2. R. A. Andrievskii and A. M. Glezer, “Strength of nanostructures,” Phys.-Usp. 52, 315–334 (2009)

    Article  Google Scholar 

  3. N. I. Noskova, V. V. Shulika, A. G. Lavrent’ev, A. P. Potapov, and G. S. Korzunin, “Structure and magnetic properties of iron-and cobalt-based amorphous alloys versus nanocrystallization conditions,” Tech. Phys. 50, 1311–1315 (2005).

    Article  Google Scholar 

  4. A. Inoue, “Bulk high strength amorphous alloys with low critical rates,” Mater. Trans. JIM 36, 866–875 (1995).

    Article  Google Scholar 

  5. V. V. Sagaradze and I. G. Kabanova, “Formation of nanocrystalline structure during direct and reverse martensitic transformations,” Mater. Sci. Eng., A 273–275, 457–461 (1999).

    Article  Google Scholar 

  6. V. V. Sagaradze, V. A. Shabashov, V. E. Danilchenko, and Ph. L’Heritier, “The structure and properties of Fe-Ni alloys with a nanocrystalline austenite formed under different conditions of Γ → α → Γ transformations,” Mater. Sci. Eng., A 337, 146–159 (2002).

    Article  Google Scholar 

  7. K. A. Malyshev, V. V. Sagaradze, I. P. Sorokin, N. D. Zemtsova, V. A. Teplov, and A. I. Uvarov, Phase-Transformation Hardening of Iron-Nickel-Based Austenite Alloys (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  8. V. V. Sagaradze and A. I. Uvarov, Strength and Properties of Austenitic Steels (Ural. Otd. Ross. Akad. Nauk, Ekaterinburg, 2013) [in Russian].

    Google Scholar 

  9. V. V. Sagaradze, “The structure and properties of ironbased nanocrystalline alloys produced using cyclic martensitic transformations,” in Severe Plastic Deformations: Toward Bulk Production of Nanostructured Materials, Ed. by A. Burhanettin (Nova Science, 2050), pp.153–167.

    Google Scholar 

  10. V. V. Sagaradze, V. E. Danil’chenko, and Ph. L’Heritier, “Transformation-induced hardening and the formation of Fe-Ni nanocrystalline austenite upon Γ→α→ Γ transformations,” Phys. Met. Metallogr. 92, 371–385 (2001).

    Google Scholar 

  11. M. Hansen and K. Anderko, The Constitution of Binary Alloys (McGraw-Hill, New York, 1958; Metallurgiya, Moscow, 1962).

    Google Scholar 

  12. I. V. Svechkarev, “Balance with autocompensation for magnetic susceptibility measurements,” Prib. Tekh. Eksp., No. 4, 142–143 (1963).

    Google Scholar 

  13. A. Hirano, M. Cohen, and B. Averbach, “Diffusion of nickel into iron,” Acta Metall. 9, 440–445 (1961).

    Article  Google Scholar 

  14. V. V. Sagaradze, K. A. Malyshev, V. M. Schastlivtsev, Yu. A. Vaseva, and L. M. Proleeva, “Effect of heating rate on the reverse α → Γ transformation in iron with 31.5% nickel alloy,” Fiz. Met. Metalloved. 39, 1239–1250 (1975).

    Google Scholar 

  15. P. J. Shewmon, “Diffusion,” in Physical Metallurgy, Ed. by. R. W. Cahn (North-Holland, Amsterdam, 1965; Mir, Moscow, 1968).

    Google Scholar 

  16. I. G. Kabanova, V. V. Sagaradze, and N. V. Kataeva, “Detection of the ɛ phase and the Headley-Brooks orientation relationships upon α → Γ transformation in the Fe-32% Ni alloy,” Phys. Met. Metallogr. 112, 381–388 (2011).

    Article  Google Scholar 

  17. I. G. Kabanova, V. V. Sagaradze, and N. V. Kataeva, “Formation of an L10 superstructure in austenite upon the α → Γ transformation in the invar alloy Fe-32% Ni,” Phys. Met. Metallogr. 112, 267–276 (2011).

    Article  Google Scholar 

  18. V. V. Sagaradze, I. G. Kabanova, N. V. Kataeva, and M. F. Klyukina, “Structural mechanism of reverse α→Γ transformation and new functional properties of Fe-Ni austenitic alloys,” Mater. Sci. Forum 738–739, 200–205 (2013).

    Article  Google Scholar 

  19. V. A. Shabashov, V. V. Sagaradze, E. E. Yurchikov, and A. V. Savel’eva, “Mössbauer and electron-microscopic study of α → Γ transformation and stabilization of iron-nickel austenite,” Fiz. Met. Metalloved. 44, 1060–1070 (1977).

    Google Scholar 

  20. R. Bozorth, Ferromagnetism (Toronto, 1951; Inostrannaya Literatura, Moscow, 1956).

    Google Scholar 

  21. W. C. Leslie and R. Z. Mieler, “The stabilization of austenite by closely-spaced boundaries,” Trans. Metall. Soc. AIME. 57, 972–979 (1964).

    Google Scholar 

  22. E. P. Blinova, A. M. Glezer, N. B. D’yakonova, and V. V. Zhorin, “Size effect upon martensitic transformations in iron-nickel alloys quenched from the melt,” Izv. Akad. Nauk, Ser. Fiz. 65, 1444–1449 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Sagaradze.

Additional information

Original Russian Text © V.V. Sagaradze, V.A. Zavalishin, N.V. Kataeva, I.G. Kabanova, I.I. Kositsina, M.F. Klyukina, A.I. Valiullin, V.A. Kazantsev, 2014, published in Fizika Metallov i Metallovedenie, 2014, Vol. 115, No. 5, pp. 517–531.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sagaradze, V.V., Zavalishin, V.A., Kataeva, N.V. et al. Using an intermediate nanocrystalline γ phase for producing austenitic steels with a controllable thermal expansion coefficient. Phys. Metals Metallogr. 115, 486–499 (2014). https://doi.org/10.1134/S0031918X14050081

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X14050081

Keywords

Navigation