Skip to main content
Log in

Energy spectrum and spectrum of optical absorption of endohedral fullerene Ca@C72

  • Theory of Metals
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The energy spectrum of the fullerene C72 has been calculated in terms of the Shubin-Vonsovskii-Hubbard model. Based on this spectrum, the spectrum of the optical absorption of the endohedral fullerene Ca@C72 has been calculated. The spectrum of the optical absorption agrees well with the experimental data. This suggests that all absorption bands in the range of 0–3 eV in endohedral fullerene can be explained by the purely electronic transitions in the subsystem of π electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. R. Khamatgalimov and V. I. Kovalenko, “Endohedral highest metallofullerens: Structure and properties,” Ross. Khim. Zh. 48, 28–36 (2004).

    Google Scholar 

  2. S. Stevenson, P. Burbank, K. Harich, Z. Sun, and H. C. Dorn, “Metal-mediated stabilization of a carbon cage,” J. Phys. Chem. 102, 2833–2837 (1998).

    Article  Google Scholar 

  3. E. G. Rakov, Nanotubes and Fullerens (Fizmatkniga, Moscow, 2006) [in Russian].

    Google Scholar 

  4. P. W. Wallace, “The band theory of graphite,” Phys. Rev. 71, 622–634 (1947).

    Article  Google Scholar 

  5. D. A. Bochvar and E. G. Gal’pern, “On hypothetic systems: Carbododecahedron, s-icosahedron, and carbo-s-icosahedron,” Dokl. Akad. Nauk SSSR 209, 610–612 (1973).

    Google Scholar 

  6. R. S. Haddon, “Electronic structure, conductivity and superconductivity of alkali metal doped (C60),” Acc. Chem. Res. 25, 127–133 (1992).

    Article  Google Scholar 

  7. T. O. Wehling, E. Sasioglu, C. Friedrich, A. I. Lichtenstein, M. I. Katsnelson, and S. Blugel, “Strength of effective Coulomb interactions in graphene and graphite,” Phys. Rev. Lett. 106, 236805 (2011).

    Article  Google Scholar 

  8. G. I. Mironov and A. I. Murzashev, “Energy spectrum of C60 fullerene,” Phys. Solid St. 53, 2393–2397 (2011).

    Article  Google Scholar 

  9. R. R. Nigmatullin, A. A. Khamzin, and I. I. Popov, “Thermodynamics of an interacting Fermi system in the static fluctuation approximation,” J. Exp. Theor. Phys. (JETP) 114, 314–323 (2012).

    Article  Google Scholar 

  10. V. V. Loskutov, G. I. Mironov, and R. R. Nigmatullin, “Static fluctuation approximation for Hubbard model,” Fiz. Nizk. Temp. 22, 282–288 (1996).

    Google Scholar 

  11. G. I. Mironov, “The B-B’-U Hubbard model in the approximation of static fluctuations,” Phys. Solid State 41, 864–869 (1999).

    Article  Google Scholar 

  12. A. I. Murzashev, “A study of carbon nanosystems using the Hubbard model,” J. Exp. Theor. Phys. (JETP) 108, 111–120 (2009).

    Article  Google Scholar 

  13. J. Hubbard, “Electron correlations in narrow energy bands,” Proc. R. Soc. Lond., Ser. A 276, 238–257 (1963).

    Article  Google Scholar 

  14. S. V. Tyablikov, Methods of Quantum Theory in Magnetism (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  15. Yu. A. Izyumov, “Strongly correlated electrons: The t-J model,” Phys.-Usp. 40, 445–476 (1997).

    Article  Google Scholar 

  16. A. V. Eletskii, “Endohedral structures” Phys.-Usp. 43, 111–137 (2000).

    Article  Google Scholar 

  17. P. V. Kamat, D. M. Guldi, and K. M. Kadish, FULLERENES: Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials The Electrochemical Society, Pennington, New Jersey, 1999).

    Google Scholar 

  18. T. Ichikawa, T. Kodama, S. Suzuki, R. Fujii, H. Nishikawa, I. Ikemoto, K. Kikuchi, and Y. Achiba, “Isolation and characterization of a new isomer of Ca@C72,” Chem. Lett. 33(8), 1008–1009 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. E. Nazarova.

Additional information

Original Russian Text © A.I. Murzashev, T.E. Nazarova, 2014, published in Fizika Metallov i Metallovedenie, 2014, Vol. 115, No. 7, pp. 675–681.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murzashev, A.I., Nazarova, T.E. Energy spectrum and spectrum of optical absorption of endohedral fullerene Ca@C72 . Phys. Metals Metallogr. 115, 635–641 (2014). https://doi.org/10.1134/S0031918X14040103

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X14040103

Keywords

Navigation