Skip to main content
Log in

Kinetics of phosphorus segregation at grain boundaries of low-alloy low-carbon steel

  • Structure, Phase Transformations, and Diffusion
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

In a temperature range of 280–320°C, the mechanism and kinetics of segregation of impurities in steels have yet remained insufficiently studied. Under these conditions diffusion of impurities in the bulk of steel grains practically ceases, and for describing the kinetics of the process it is incorrect to use the Langmuir-McLean equation. In this work we put forward two new approaches to describe the mechanism and kinetics of phosphorus segregation in steels: a model of sequential changes in the state of phosphorus based on first-order reactions and a model of diffusion redistribution of phosphorus between boundaries of carbide precipitates, structure defects, and boundaries of steel grains. A comparative analysis of the suggested models has been conducted, and estimates of the kinetics of segregation based on them have been made; these estimates have been compared with the experimental results obtained in the temperature range of 280–320°C for test times to ∼20 years. It has been shown that these models fairly well describe the experimental kinetics of phosphorus segregation in boundaries of steel grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. M. Utevskii, E. E. Glikman, and G. S. Kark, Reversible Temper Brittleness of Steel and Alloys of Iron (Metallurgiya, Moscow, 1987) [in Russian].

  2. M. Guttmann, “Grain boundary segregation, two dimensional compound formation, and precipitation,” Metall. Trans. A 8, 1383–1401 (1977).

    Article  Google Scholar 

  3. B. S. Bokshtein, V. A. Esin, and A. O. Rodin, “A new model of grain-boundary segregation with the formation of atomic complexes in a grain boundary, Phys. Met. Metallogr. 109, 316–322 (2010).

    Article  Google Scholar 

  4. V. A. Esin and B. S. Bokstein, “Effect of atomic interaction on grain boundary diffusion in the B regime.” Acta Mater. 60, 5109–5116 (2012).

    Article  Google Scholar 

  5. C. L. Briant, “On the chemistry of grain boundary segregation and grain boundary fracture,” Metall. Trans. A 21, 2339–2354 (1990).

    Article  Google Scholar 

  6. M. Hashimoto, S. Wakayama, R. Yamamoto, and M. Doyama, “Atomistic studies of grain boundary segregation in the Fe-P and Fe-B alloys. II. Electron structure and intergranular embrittlement,” Acta Metall. 32, 13–20 (1984).

    Article  Google Scholar 

  7. W. Losch, “A new model of grain boundary failure in temper embrittled steel,” Acta Metall. 27, 1885–1892 (1979).

    Article  Google Scholar 

  8. C. L. Briant and S. R. Banerji, “Tempered martensite embrittlement in phosphorus-doped steels,” Metall. Trans A, 10, 1729–1737 (1979).

    Article  Google Scholar 

  9. E. D. Hondros and M. P. Seah, “The theory of grain boundary segregation in terms of surface adsorption analogues,” Metall. Trans. A 8, 1363–1371 (1977).

    Article  Google Scholar 

  10. F. L. Carr, M. Goldman, L. D. Jaffe, and D. C. Buffum, “Isothermal temper embrittlement of SAE 3140 steel,” Trans. AIME 197, 998 (1953).

    Google Scholar 

  11. E. E. Glikman, V. F. Kotyshev, Yu. I. Cherpakov, and R. E. Bruver, “Nature of reversible temper brittleness and effect of carbon, phosphorus and alloyed elements on thermokinetic properties of development of brittleness,” Fiz. Met. Metalloved. 36, 365–379 (1973).

    Google Scholar 

  12. E. I. Glikman, R. E. Bruver, and K. Yu. Sarychev, “Effect of carbon on intercrystalline internal adsorption and intergranular cohesion in iron-phosphorus alloys,” Dokl. Akad. Nauk SSSR 200, 1055–1058 (1971).

    Google Scholar 

  13. E. E. Glikman, Yu. V. Grdina, and Yu. V. Piguzov, “Investigation of the nature of reversible temper brittleness of steels by the internal friction method,” Met. Sci. Heat Treatment 9, 241–248 (1967).

    Article  Google Scholar 

  14. M. Guttmann, “The role of residuals and alloying elements in temper embrittlement,” Philos. Trans. Roy. Soc. A, 295, 169–196 (1980).

    Article  Google Scholar 

  15. M. Guttmann, Interfacial segregation in multicomponent systems, in Atomistics of Fracture, Proc. NATO Adv. Res. Inst. (Plenum, New York, 1983), pp. 465–494.

    Chapter  Google Scholar 

  16. M. Guttmann, “Equilibrium segregation in a ternary solution: A model for temper embrittlement,” Surf. Sci. 53, 213–227 (1975).

    Article  Google Scholar 

  17. D. McLean, Grain Boundaries in Metals (Oxford University Press, London, 1957; Metallurgizdat, Moscow, 1960).

    Google Scholar 

  18. E. D. Hondros and M. P. Seah, “The theory of grain boundary segregation in terms of surface adsorption analogues,” Metall. Trans. A 8, 1363–1371 (1977).

    Article  Google Scholar 

  19. Z. Lu, R. G. Faulkner, R. B. Jones, and P. E. J. Flewitt, “Radiation- and thermally-induced phosphorus intergranular segregation in pressure vessel steels,” J. ASTM Int. 2, 180–194 (2005).

    Article  Google Scholar 

  20. S. G. Park, K. H. Lee, K. D. Min, M. C. Kim, and B. S. Lee, “Influence of the thermodynamic parameters on the temper embrittlement of SA508 Gr. 4N Ni-Cr-Mo low alloy steel with variation of Ni, Cr and Mn contents,” J. Nucl. Mater. 426, 1–8 (2012).

    Article  Google Scholar 

  21. M. K. Miller, R. Jayaram, and K. F. Russel, “Characterization of phosphorus segregation in neutron-irradiated Russian pressure vessel still weld,” J. Nucl. Mater. 225, 215–224 (1995).

    Article  Google Scholar 

  22. C. English, G. Gage, J. Hyde, P. H. N. Ray, and I. A. Vatter, “Temper embrittlement, irradiation induced phosphorus segregation and implications for post-irradiation annealing of reactor pressure vessels,” Proc. 18th Int. Symp. ASTM STP 1325 on Effects of Radiation on Materials, Ed. by R. K. Nanstad, M. L. Hamilton, F. A. Garner, and A. S. Kumar (Amer. Soc. Test. Mater., West Conshohocken, PA, 1999), pp. 296–316.

    Google Scholar 

  23. J. C. Fisher, “Calculation of diffusion penetration curves for surface and grain boundary diffusion,” J. Appl. Phys. 22, 74–76 (1951).

    Article  Google Scholar 

  24. B. A. Gurovich, E. A. Kuleshova, O. O. Zabusov, S. V. Fedotova, K. E. Prikhod’ko, A. S. Frolov, D. A. Mal’tsev, and M. A. Saltykov, “Radiationinduced structural effects in steels of VVER-1000 nuclear reactor vessels during exploitation, recovery annealing and repeated accelerated irradiation,” Izv. Vyssh. Uchebn. Zaved. Yadern. Energet., No. 3, 122–132 (2011).

    Google Scholar 

  25. Carslaw, H.S. and Jaeger, J.C., Conduction of Heat in Solids (Oxford Univ. Press, New York, 1959; Nauka, Moscow, 1964).

    Google Scholar 

  26. G. Luckman, R. Didio, and W. Graham, “Phosphorus interdiffusivity in α-Fe binary and alloy systems,” Metall. Mater. Trans. A 12, 253–259 (1981).

    Article  Google Scholar 

  27. V. V. Mural’ and P. L. Gruzin, “Effect of alloying on the diffusion of phosphorus in austenite,” Fiz. Met. Metalloved. 17, 792–795 (1964).

    Google Scholar 

  28. S. G. Park, M. C. Kim, B. S. Lee, and D. M. Wee, “Correlation of the thermodynamic calculation and the experimental observation of Ni-Mo-Cr low alloy steel changing Ni, Mo, and Cr contents,” J. Nucl. Mater. 407, 126–136 (2010).

    Article  Google Scholar 

  29. C. A. English, S. R. Ortner, G. Gage, W. L. Server, and S. T. Rosinski, “Review of phosphorus segregation and intergranular embrittlement in reactor pressure vessel steels,” Proc. 20th Int. Symp. ASTM STP 1405 on Effects of Radiation on Materials, Ed. by S. T. Rosinski, M. L. Grossbeck, T. R. Allen, and A. S. Kumar (Amer. Soc. Test. Mater., West Conshohocken, PA, 2001)

    Google Scholar 

  30. E. E. Glickman, “Intergranular fracture of metals under the action of surface-active additions and melts,” Doctoral (Phys.-Math.) Dissertation, Moscow, 1980.

    Google Scholar 

  31. W. R. Tyson, “Kinetics of temper embrittlement,” Acta Metall. 26, 1471–1478 (1978).

    Article  Google Scholar 

  32. B. S. Bokshtein and M. I. Mendelev, Short Course of Physical Chemistry (CheRo MISiS, Moscow, 2002) [in Russian].

  33. A. Vy-rostková, J. Perhácová, V. Homolová, P. Sevc, J. Janovec, and H. J. Grabke, “Some aspects of carbide precipitation and phosphorus grain boundary segregation in Cr-V low alloy steels,” Kovine, zlitine, tehnologije 33, 423–426 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Khodan.

Additional information

Original Russian Text © B.S. Bokshtein, A.N. Khodan, O.O. Zabusov, D.A. Mal’tsev, B.A. Gurovich, 2014, published in Fizika Metallov i Metallovedenie, 2014, Vol. 115, No. 2, pp. 156–166.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bokshtein, B.S., Khodan, A.N., Zabusov, O.O. et al. Kinetics of phosphorus segregation at grain boundaries of low-alloy low-carbon steel. Phys. Metals Metallogr. 115, 146–156 (2014). https://doi.org/10.1134/S0031918X14020033

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X14020033

Keywords

Navigation