Skip to main content
Log in

Atomistic simulation of stacking faults in (001), (010), and (100) planes of cementite

  • Strength and Plasticity
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Molecular-dynamics method was used to study γ surfaces for the (001), (010), and (100) planes of cementite. Displacement vectors corresponding to stable stacking faults have been determined. The energy of these stacking faults has been calculated by the molecular-dynamics and ab initio methods. The energy of unstable stacking faults, which characterizes the tendency of a material to plastic relaxation, has been estimated. The reactions of the splitting of perfect dislocations have been suggested; the possibility of the propagation of stacking faults in the planes under consideration is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. M. Schastlivtsev, D. A. Mirzaev, I. L. Yakovleva, K. Yu. Okishev, T. I. Tabachnikova, and Yu. V. Khlebnikova, Pearlite in Carbon Steels (Ural. Otdel. Ross. Akad. Nauk, Ekaterinburg, 2006) [in Russian].

    Google Scholar 

  2. A. Koreeda and K. Shimizu, “Dislocations in cementite,” Philos. Mag. 17, 1083–1086 (1968).

    Article  Google Scholar 

  3. A. Inoue, T. Ogura, and T. Masumoto, “Deformation and fracture behaviors of cementite,” Trans. Jpn. Inst. Metals 17, 663–672 (1976).

    Google Scholar 

  4. A. Inoue, T. Ogura, and T. Masumoto, “Dislocation structure of cementite in cold-rolled carbon steels,” J. Jpn. Inst. Metals 37, 875–882 (1973).

    Google Scholar 

  5. A. Inoue, T. Ogura, and T. Masumoto, “Microstructures of deformation and fracture of cementite in pearlitic carbon steels strained at various temperatures,” Metall. Trans. A 8, 1689–1695 (1977).

    Article  Google Scholar 

  6. I. L. Yakovleva, L. E. Kar’kina, T. A. Zubkova, and T. I. Tabatchikova, “Effect of cold plastic deformation on the structure of granular pearlite in carbon steels,” Phys. Met. Metallogr. 112, 101–108 (2011).

    Article  Google Scholar 

  7. A. S. Ken, “Imperfections and plastic deformation of cementite in steel,” Acta Metall. 11, 1101–1103 (1963).

    Article  Google Scholar 

  8. A. Inoue, T. Ogura, and T. Masumoto, “Burgers vectors of dislocations in cementite crystal,” Scr. Metal. 11, 1–5 (1977).

    Article  Google Scholar 

  9. L. E. Kar’kina, I. N. Kar’kin, I. L. Yakovleva, and T. A. Zubkova, “Computer simulation of carbon diffusion near b/2[010](001) dislocation in cementite,” Phys. Met. Metallogr. 114, 155–161 (2013).

    Article  Google Scholar 

  10. V. Rosato, “Comparative behavior of carbon in bcc and fcc iron,” Acta Metall. 37, 2759–2763 (1989).

    Article  Google Scholar 

  11. M. S. Daw and M. I. Baskes, “Embedded atom method: Derivation and application to impurities, surfaces and other defects in metals,” Phys. Rev. B: Condens. Matter 29, 6443–6453 (1984).

    Article  Google Scholar 

  12. R. A. Johnson, G. J. Dienes, and A. C. Damask, “Calculation of the energy and migration characteristics of carbon and nitrogen in α-iron and vanadium,” Acta Metall. 12, 1215–1224 (1964).

    Article  Google Scholar 

  13. E. V. Levchenko, A. V. Evteev, I. V. Belova, and G. E. Murch, “Molecular dynamics simulation and theoretical analysis of carbon diffusion in cementite,” Acta Mater. 57, 846–853 (2009).

    Article  Google Scholar 

  14. G. Kresse and J. Furthmuller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B: Condens. Matter 54, 11169–11186 (1996).

    Article  Google Scholar 

  15. G. Kresse and J. Hafner, “Norm-conserving and ultra-soft pseudopotentials for first-row and transition elements,” J. Phys.: Condens. Matter 6, 8245–8258 (1994).

    Google Scholar 

  16. G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B: Condens. Matter Mater. Phys. 59, 1758–1775 (1999).

    Article  Google Scholar 

  17. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, “Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation,” Phys. Rev. B: Condens. Matter 46, 6671–6687 (1992).

    Article  Google Scholar 

  18. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, “Erratum: Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation,” Phys. Rev. B: Condens. Matter 48, 4978–4978 (1993).

    Article  Google Scholar 

  19. S. H. Vosko, L. Wilk, and M. Nusair, “Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis,” Canad. J.Phys. 58, 1200–1211 (1980).

    Article  Google Scholar 

  20. A. Kelly, W. Tyson, and A. H. Cottrell, “Ductile and brittle crystals,” Philos. Mag. 15, 567–586 (1967).

    Article  Google Scholar 

  21. K. Yu. Okishev, D. A. Mirzaev, V. M. Schastlivtsev, and I. L. Yakovleva, “Study of the structure of cementite in pearlite from the broadening of diffraction maxima,” Phys. Met. Metallogr. 85, 218–222 (1998).

    Google Scholar 

  22. Y. Sun, J. R. Rice, and L. Truskinovsky, “Dislocation nucleation versus cleavage in Ni3Al and Ni,” Mater. Res. Soc. Symp. Proc. 213, 243–248 (1991).

    Article  Google Scholar 

  23. Yu. N. Gornostyrev, M. I. Katsnelson, N. I. Medvedeva, O. N. Mryasov, A. J. Freeman, and A. V. Trefilov, “Peculiarities of defect structure and mechanical properties of iridium: Results of ab initio electronic structure calculations,” Phys. Rev. B: Condens. Matter Mater. Phys. 62, 7802–7808 (2000).

    Article  Google Scholar 

  24. L. I. Yakovenkova and L. E. Kar’kina, Structure of the Dislocation Core and Deformation Behavior of Single Crystal Ti 3 Al (Ural. Otd. Ross. Akad. Nauk, Ekaterinburg, 2008) [in Russian].

    Google Scholar 

  25. L. E. Kar’kina, T. A. Zubkova, and I. L. Yakovleva, “Dislocation structure of cementite in granular pearlite after cold plastic deformation,” Phys. Met. Metallogr. 114, 234–241 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. E. Kar’kina.

Additional information

Original Russian Text © L.E. Kar’kina, I.N. Kar’kin, A.R. Kuznetsov, 2014, published in Fizika Metallov i Metallovedenie, 2014,Vol. 115, No. 1, pp. 91–104.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kar’kina, L.E., Kar’kin, I.N. & Kuznetsov, A.R. Atomistic simulation of stacking faults in (001), (010), and (100) planes of cementite. Phys. Metals Metallogr. 115, 85–97 (2014). https://doi.org/10.1134/S0031918X14010086

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X14010086

Keywords

Navigation