Skip to main content
Log in

Carbonization of α-Fe upon mechanical alloying

  • Structure, Phase Transformations, and Diffusion
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Methods of thermomagnetic analysis (TMA) and Mössbauer spectrometry (57Fe) have been used to study the processes of the carburizing of α-Fe under the conditions of mechanical milling in a medium of liquid hydrocarbons. It has been established that, under the chosen conditions of the mechanical synthesis of carbides, the process of carbonization at T < 375 K occurs through the decomposition of the deformation-induced martensite, i.e., the supersaturated bct solid solution α″-Fe(C) with the formation of transitional hcp ε and ε′ phases that precede the formation of cementite. The milling of the metallic iron in the toluene medium substantially enhances the catalytic capability of disperse powders of α-Fe in the process of conversion of cyclic structures of hydrocarbons into other chemical forms. The increase in the dispersity of the iron powder to a nanocrystalline state leads to an increase in the chemical activity of carbon and an increase in the rate of diffusion sufficient for the formation in the Fe-C mixture of both primary cementite (θ′) with an anomalously low Curie temperature T C(θ′)(first stage) and secondary cementite (θ″) at the second stage of mechanosynthesis. The parameters of hyperfine interactions have been calculated for a number of synthesized carbides. It has been shown that the change in the carbon concentration in iron carbides is determined by the following inequality: c C(θ′) > c C(ε) > c C(ε′). The boundary of the temperature stability of cementite has been established. The effect of the decomposition of the θ phase (Fe3C) upon thermal cycling θ ⇔ γ in the temperature range of 300 < T < 1075 K has been revealed. Based on the results obtained, a scheme of the sequence of phase transformations that occur in the Fe-C system under the conditions of low-temperature mechanosynthesis has been derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. H. Podgurski, J. T. Kummer, T. W. Dawitt, and P. H. Emmett, “Preparation, stability and absorptive properties of the carbides of iron,” J. Am. Chem. Soc. 72, 5382–5388 (1950).

    Article  Google Scholar 

  2. E. I. Cohn and L. J. E. Hofer, “Mode of transition from Hägg iron carbide to cementite,” J. Am. Chem. Soc. 72, 4662–4664 (1950).

    Article  Google Scholar 

  3. K. Lohberg, “Zementit als Substitutionsmischkristall des Austenites,” Arch. Eisenhuttenw. 32, 409–412 (1961).

    Google Scholar 

  4. G. Le Caër, J. M. Dubois, and J. P. Senateur, “Etude par spectrometrie Mössbauer des carbures de fer Fe3C et Fe 5C2,” J. Solid State Chem. 19, 19–28 (1976).

    Article  Google Scholar 

  5. G. Le Caër, J. M. Dubois, M. Pijlat, and P. Busslere, “Characterization by Mössbauer spectroscopy of iron carbides formed by Fischer-Tropsch synthesis,” J. Phys. Chem. 86, 4799–4808 (1982).

    Article  Google Scholar 

  6. H. E. Plessis, “The crystal structures of iron carbides,” in Fisher-Tropsh Process Issue, 2008. http://hdl.handle.net/10210/421.

  7. V. A. Barinov, V. A. Tsurin, and V. T. Surikov, “Study of mechanically synthesized carbide Fe7C3,” Phys. Met. Metallogr. 110, 474–484 (2010).

    Article  Google Scholar 

  8. V. A. Barinov, E. P. Elsukov, and L. V. Ovechkin, USSR Inventor’s Certificate No. 1678525. Filing for Application from ΟΦΤΓΦΚΗ 05, 1989.

    Google Scholar 

  9. E. P. Yelsukov, V. A. Barinov, and L. V. Ovetchkin, “Synthesis of disodered Fe3 C alloy by mechanical alloying of iron powders with liquid hydrocarbon (toluene),” J. Mater. Sci. Lett. 11, 662–663 (1992).

    Article  Google Scholar 

  10. E. P. Elsukov, G. A. Dorofeev, V. M. Fomin, G. N. Konygin, A. V. Zagainov, and A. N. Maratkanova, “Mechanically alloyed Fe100-x Cx (x = 5–25 at %) powders: I. Structure, phase composition, and temperature stability,” Phys. Met. Metallogr. 94, 356–366 (2002).

    Google Scholar 

  11. V. S. Rusakov, Mössbauer Spectrometry of Locally Heterogeneous Systems (OPNI IYaF NYaTs RK, Almaty, 2000) [in Russian].

    Google Scholar 

  12. H. E. du Plessis, J. P. R. de Villers, and G. J. Kruger, “Redetermination of the crystal structure of Fe5C2 Hägg carbide,” Z. Kristallogr. 222, 211–217 (2007).

    Google Scholar 

  13. G. Le Caër and E. Bauer-Grosse, “Aperiodic carbides formed by crystallization of amorphous Fe-C alloys,” Hyperfine Interact. 47, 55–67 (1989).

    Article  Google Scholar 

  14. S. Nagakura and S. Oketani, “Structure of transition metal carbides,” Trans. Inst. Iron Steel Jpn., 8, 265–294 (1968).

    Google Scholar 

  15. V. S. Litvinov, S. D. Karakishev, and V. V. Ovchinnikov, Nuclear Gamma-Resonance Spectroscopy of Alloys (Metallurgiya, Moscow, 1982) [in Russian].

    Google Scholar 

  16. V. S. Rusakov, K. K. Kadyrzhanov, and T. E. Turkebaev, “Mössbauer study of iron surface implanted by carbon atoms,” Poverkhnost, No. 4, 27–33 (2000).

    Google Scholar 

  17. V. M. Nadutov, V. M. Garamus, and J. C. Rawers, “Mössbauer and SANS study of Fe-powder mechanically alloyed with carbon,” Mater. Sci. Forum 343–346, 721–725 (2000).

    Article  Google Scholar 

  18. M. Ron, A. Kidron, H. Schechter, and S. Niedzwiedz, “Structure of Martensite,” J. Appl. Phys. 38, 590–594 (1967).

    Article  Google Scholar 

  19. E. Bauer-Grosse and G. Le Caër, “Structural evolution of sputtered amorphous Fe1-x Cx films for 0.19 ≤ x ≤ 0.49,” Philos. Mag. 56, 485–500 (1987).

    Article  Google Scholar 

  20. G. Kurdjumov, “Röntgenographische Untersuchung der Structur des angelassenen Kohlenstoffstahls,” Z. Phys. 55, 187–198 (1929).

    Article  Google Scholar 

  21. T. V. Panova, V. I. Blinov, and V. S. Kolivchak, Determination of Lattice Parameters of Martensite and Carbon Content in It. Methodical Book (Omsk. Gos. Univ., Omsk, 2004) [in Russian].

    Google Scholar 

  22. K. H. Jack, “Iron-nitrogen, iron-carbon and iron-carbon-nitrogen interstitial alloys: Their occurrence in tempered martensite,” Nature 158, no. 4002, 60–61 (1946).

    Article  Google Scholar 

  23. J. Grangle and W. Sucksmith, “Magnetic analysis of iron-carbon alloys. The tempering of martensite and retained austenite,” J. Iron Steel Inst. 168, 141–151 (1951).

    Google Scholar 

  24. H. Ino, T. Moriya, F. E. Fujita, Y. Maeda, Y. Ono, and Y. Inokuti, “A study of the Mössbauer effect during the tempering of iron-carbon martensite,” J. Phys. Soc. Jpn. 25, 88–99 (1968).

    Article  Google Scholar 

  25. V. I. Izotov and L. M. Utevskii, “On the structure of martensite crystals of high-carbon steel,” Fiz. Met. Metalloved. 25, 98–109 (1968).

    Google Scholar 

  26. E. P. Elsukov, V. M. Fomin, D. A. Vytovtov, G. A. Dorofeev, A. V. Zagainov, N. B. Arsent’eva, and S. F. Lomaeva, “Structural and phase transformations during isothermal annealing of mechanically alloyed iron-amorphous Fe-C phase nanocomposite: Formation of cementite,” Phys. Met. Metallogr. 100, 251–269 (2005).

    Google Scholar 

  27. A. P. Gulyaev, Physical Metallurgy (Metallurgiya, Moscow, 1977) [in Russian].

    Google Scholar 

  28. S. A. Eliason and C. H. Bartholomew, “Reaction and deactivation kinetics for Fischer-Tropsh synthesis on unpromoted iron and potassium-promoted iron catalyst,” Appl. Catal. A: General 186, 229–243 (1999).

    Article  Google Scholar 

  29. V. I. Voronin, I. F. Berger, Yu. N. Gornostyrev, V. N. Urtsev, A. R. Kuznetsov, and A. V. Shmakov, “Composition of cementite in the dependence on the temperature. In situ neutron diffraction study and ab initio calculations,” JETP Lett. 91, 143–146 (2010).

    Article  Google Scholar 

  30. K. P. Bunin and L. A. Dolinskaya, “On the diffusion of carbon in cementite,” Dokl. Akad. Nauk USSR, No. 6, 455–457 (1951).

    Google Scholar 

  31. I. I. Novikov, Theoretical Principles of Heat Treatment in Metallurgy (Metallurgiya, Moscow, 1978) [In Russian].

    Google Scholar 

  32. G. Le Caër and P. Matteazzi, “Mössbauer study of mechanosynthesized iron carbides,” Hyperfine Interact. 66, 309–318 (1991).

    Article  Google Scholar 

  33. J. M. R. Genin, “The clustering and coarsening of carbon multiplets during aging of martensite from Mössbauer spectroscopy: The precipitation stage of epsilon carbide,” Metall. Trans. A 18, 1371–1388 (1987).

    Article  Google Scholar 

  34. E. J. Fasiska and G. A. Jeffrey, “On the cementite structure,” Acta Crystallogr. 19, 463–471 (1965).

    Article  Google Scholar 

  35. L. J. E. Hofer, E. M. Cohn, and W. C. Peebles, “The modifications of the carbide, Fe2C. Their properties and identification,” J. Am. Chem. Soc. 71, 189–195 (1949).

    Article  Google Scholar 

  36. A. A. Popov, Theoretical Foundations of the Chemical and Thermal Treatment of Steel (Metallurgizdat, Sverdlovsk, 1962) [in Russian].

    Google Scholar 

  37. H. Gleiter, “Hanostructured materials: Basic concepts and microstructure,” Acta Mater. 48, 1–29 (2000).

    Article  Google Scholar 

  38. U. Herr, J. Jing, R. Birringer, U. Gouser, and H. Gleiter, “Investigation of nanocrystalline iron materials by Mössbauer spectroscopy,” Appl. Phys. Lett. 50, 472–474 (1987).

    Article  Google Scholar 

  39. Physical Metallurgy, Ed. by R. W. Cahn and P. Haasen (North-Holland, New York, 1983; Metallurgiya, Moscow, 1987).

  40. J. Horvath, R. Birringer, and H. Gleiter, “Diffusion in nanocrystalline materials,” Solid State Commun. 62, 319–322 (1987).

    Article  Google Scholar 

  41. G. A. Dorofeev, E. P. Elsukov, V. M. Fomin, G. N. Konygin, and A. V. Zagainov, “Solid phase reactions in Fe-C system during metallic welding,” Khim. Interes. Ustoich. Razvit. 10, 53–58 (2002).

    Google Scholar 

  42. K. H. Jack, “Structural transformations in tempering of high-carbon martensitic steels,” J. Iron Steel Inst. 169, 26–36 (1951).

    Google Scholar 

  43. S. Nagakura, “Study of metallic carbides by electron diffraction. Part III. Iron carbides,” J. Phys. Soc. Jpn. 14, 186–195 (1959).

    Article  Google Scholar 

  44. M. Dirand and L. Afqir, “Identification structurale precize des carbures precipites dans aciers faiblement allies aux divers stades du revenu. Mecanismes de precipitation,” Acta Metall. 31, 1089–1107 (1983).

    Article  Google Scholar 

  45. M. J. van Genderin, M. Isac, A. Böttger, and E. J. Mittemeijer, “Aging and tempering behavior of iron-nickel-carbon and iron-carbon martensite,” Metal. Mater. Trans. A 28, 545–561 (1997).

    Article  Google Scholar 

  46. H. Bernas, I. A. Campball, and R. Fruchart, “Electronic exchange and Mössbauer effect in iron-based interstitial compounds,” J. Phys. Chem. Solids 28, 17–24 (1967).

    Article  Google Scholar 

  47. L. J. E. Hoffer, E. M. Cohn, and W. C. Peebles, “Modifications of the carbide Fe2C,” J. Am. Chem. Soc. 71, 189–195 (1949).

    Article  Google Scholar 

  48. R. A. Arents, Yu. V. Maksimov, I. P. Suzdalev, V. K. Imshennik, and Yu. F. Krupyanskii, “Mössbauer study of local magnetic structure of ε-carbide of iron and intermediate carbides obtained during the ε → χ → θ transformations,” Fiz. Met. Metalloved. 36, 277–284 (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Barinov.

Additional information

Original Russian Text © V.A. Barinov, V.A.Tsurin, V.A. Kazantsev, V.T. Surikov, 2014, published in Fizika Metallov i Metallovedenie, 2014, Vol. 115, No. 1, pp. 57–73.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barinov, V.A., Tsurin, V.A., Kazantsev, V.A. et al. Carbonization of α-Fe upon mechanical alloying. Phys. Metals Metallogr. 115, 53–68 (2014). https://doi.org/10.1134/S0031918X14010025

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X14010025

Keywords

Navigation