Skip to main content
Log in

Internal friction and evolution of ultrafine-grained structure during annealing of Grade-4 titanium subjected to severe plastic deformation

  • Strength and Plasticity
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Electron microscopy, X-ray diffraction, tensile tests, and measurements of internal friction (IF) have been used to study the transformation of the structure and properties of commercial Grade-4 titanium subjected to deformation using equal-channel angular pressing combined with the Conform process (ECAP-Conform), drawing, and subsequent annealing. It has been found that the ECAP-CONFORM with drawing leads to a decrease in the grain size of titanium to about 150 nm. During annealing at 400°C for 1 h, the growth of separate grains was observed; with an increase in the annealing temperature to 450°C or higher, the growth of grains in the whole volume of a specimen occurred. It has been shown that titanium in the ultrafine-grained (UFG) state is characterized by an internal-friction peak at temperatures of 450–500°C (under the selected measurement conditions), which results from the processes of recovery and recrystallization. During repeated heating, no such effect was observed. At higher temperatures, a thermally activated relaxation internal-friction peak was found, which appears to be a grain-boundary internal-friction peak.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Z. Valiev and I. V. Aleksandrov, Bulk Nanostructured Metallic Materials (AkademKniga, Moscow, 2007) [in Russian].

    Google Scholar 

  2. R. Z. Valiev, Y. Estrin, Z. Horita, T. G. Langdon, M. J. Zehetbauer, and Y. T. Zhu, “Producing bulk ultrafine-grained materials by severe plastic deformation,” JOM 58(4), 33–39 (2006).

    Article  Google Scholar 

  3. A. I. Igolkin, “Titanium in medicine,” Titan, No. 1, 86–90 (1993).

    Google Scholar 

  4. V. V. Stolyarov, Y. T. Zhu, I. V. Alexandrov, T. C. Lowe, and R. Z. Valiev, “Influence of ECAP routes on the microstructure and properties of pure Ti,” Mater. Sci. Eng. A 299, 59–67 (2001).

    Article  Google Scholar 

  5. A. V. Sergueeva, V. V. Stolyarov, R. Z. Valiev, and A. K. Mukherjee, “Advanced mechanical properties of pure titanium with ultrafine grained structure,” Scr. Mater., 45, 747–752 (2001).

    Article  CAS  Google Scholar 

  6. A. A. Popov, I. Yu. Pyshmintsev, S. L. Demakov, A. G. Illarionov, T. C. Lowe, and R. Z. Valiev, “Structural and mechanical properties of nanocrystalline titanium processed by severe deformation processing,” Scr. Mater., 37, 1089–1094 (1997).

    Article  CAS  Google Scholar 

  7. R. Z. Valiev, I. P. Semenova, V. V. Latysh, A. V. Shcherbakov, and E. B. Yakushina, “Nanostructured titanium for biomedical applications: New developments and challenges for commercialization,” Nanotechnologies in Russia, 3, 593–601 (2008).

    Article  Google Scholar 

  8. G. A. Salishchev, S. V. Zherebtsov, and R. M. Galeyev, “Evolution of microstructure and mechanical behavior of titanium during warm multiple deformation,” Proc. TMS 2002 Ann. Meeting “Ultrafine Grained Materials II”, Ed. by T. Zhu, T. E. Langdon, R. S. Mishra, S. L. Semiatin, M. J. Saran, and T. C. Lowe (The Minerals, Metals and Materials Society, Warrendale, Pa., 2002), pp. 123–131.

    Google Scholar 

  9. S. Yu. Mironov, G. A. Salishchev, and M. M. Myshlyaev, “Structure evolution in submicrocrystalline titanium upon cold deformation,” Phys. Met. Metallogr. 93, 362–373 (2002).

    Google Scholar 

  10. O. A. Kashin, “Deformation behavior in the field of microplastic deformation of titanium and Ti-Al-V alloy with ultrafine-grained structure and different types of thermal-force impact,” Doctoral (Eng.) Dissertation, Tomsk, 2007.

    Google Scholar 

  11. G. A. Salishchev, R. M. Galeev, S. P. Malysheva, S. B. Mikhailov, and M. M. Myshlyaev, “Effect of annealing on damping and elasticity of submicrocrystalline titanium and its VT8 alloy,” Phys. Met. Metallogr. 87, 313–317 (1999).

    Google Scholar 

  12. I. S. Golovin, T. S. Pavlova, S. B. Golovina, H. -R. Sinning, and S. A. Golovin, “Effect of severe plastic deformation of Fe-26 at. % Al and titanium on internal friction,” Mater. Sci. Eng. A 442, 165–169 (2006).

    Article  Google Scholar 

  13. G. I. Raab, R. Z. Valiev, D. V. Gunderov, T. Lowe, A. Misra, and Yu. Zhu, “Long-length ultrafine-grained titanium rods produced by ECAP-conform,” Mater. Sci. Forum 584–586, 80–88 (2008).

    Article  Google Scholar 

  14. G. I. Raab, A. V. Polyakov, D. V. Gunderov, and R. Z. Valiev, “Formation of a nanostructure and properties of titanium rods during equal-channel angular pressing CONFORM followed by drawing,” Russ. Metall. (Metally), No. 5, 416–420 (2009).

    Google Scholar 

  15. I. S. Golovin, “Grain-boundary relaxation in copper before and after equal-channel angular pressing and recrystallization,” Phys. Met. Metallogr. 110, 405–412 (2010).

    Article  Google Scholar 

  16. I. S. Golovin and Y. Estrin, “Mechanical spectroscopy of ultrafine grained copper,” Mater. Sci. Forum 667–669, 857–862 (2011).

    Google Scholar 

  17. G. D. Fan, M. Y. Zheng, X. S. Hu, C. Xu, K. Wu, and I. S. Golovin, “Improved mechanical property and internal friction of pure Mg processed by ECAP,” Mater. Sci. Eng., A 556, 588–594 (2012).

    Article  CAS  Google Scholar 

  18. R. Kohlrausch, “Theorie des elektrischen Ruckstandes in der Leidener Flasche,” Ann. Phys. Chem. (Poggendorf), 91, 179–214 (1854).

    Article  Google Scholar 

  19. A. V. Mikhaylovskaya, M. A. Ryazantseva, I. S. Golovin, and V. K. Portnoi, “Effect of microadditions of magnesium and zinc in aluminum upon heating of cold-rolled sheets,” Phys. Met. Metallogr. 113, 795–802 (2012).

    Article  Google Scholar 

  20. I. S. Golovin, Internal Friction and Mechanical Spectroscopy of Metallic Materials. A Tutorial (Mosk. Inst. Stali Splavov, Moscow, 2012) [In Russian].

    Google Scholar 

  21. T. Ungar, “Microstructural parameters from X-ray diffraction peak broadening,” Scr. Mater. 51, 777–781 (2004).

    Article  CAS  Google Scholar 

  22. M. S. Blanter, I. S. Golovin, H. Neuhauser, and H.-R. Sinning, Internal Friction in Metallic Materials. AHandbook (Springer-Verlag, New York, 2007).

    Google Scholar 

  23. K. L. Ngai, A. K. Jonscher, and C. T. White, “On the origin of the universal dielectric response in condensed matter,” Nature 277(5693), 185–189 (1979).

    Article  CAS  Google Scholar 

  24. Q. P. Kong, W. B. Jiang, Y. Shi, P. Cui, Q. F. Fang, and M. Winning, “Grain boundary internal friction in bicrystals with different misorientations,” Mater. Sci. Eng., A 521–522, 128–133 (2009).

    Article  Google Scholar 

  25. E. F. Dudarev, G. P. Pochivalova, Yu. R. Kolobov, O. A. Kashin, I. G. Galkina, N. V. Girsova, and R. Z. Valiev, “True grain-boundary slipping in coarse- and ultrafine-grained titanium,” Russ. Phys. J. 47, 617–625 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Gunderov.

Additional information

Original Russian Text © D.V. Gunderov, A.V. Polyakov, V.D. Sitdikov, A.A. Churakova, I.S. Golovin, 2013, published in Fizika Metallov i Metallovedenie, 2013, Vol. 114, No. 12, pp. 1136–1143.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gunderov, D.V., Polyakov, A.V., Sitdikov, V.D. et al. Internal friction and evolution of ultrafine-grained structure during annealing of Grade-4 titanium subjected to severe plastic deformation. Phys. Metals Metallogr. 114, 1078–1085 (2013). https://doi.org/10.1134/S0031918X13120041

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X13120041

Keywords

Navigation