Skip to main content
Log in

On the theory of the thermofluctuation motion of domain walls in nanowires

  • Theory of Metals
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Using the Arrhenius law, the thermofluctuation motion of a domain wall in a nanowire in the field of energy barriers formed by magnetic nonuniformities is investigated. The expression for the density of the distribution of the activation energy in the case of the domain wall pinning at magnetic nonuniformities has been obtained. The velocity of the thermally activated motion of the domain wall for certain particular cases of the probabilistic distribution of the activation energy has been estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Henry, A. Iovan, J. -M. George, and L. Piraux, “Statistical analysis of the magnetization processes in arrays of electrodeposited ferromagnetic nanowires,” Phys. Rev. B: Condens. Matter Mater. Phys. 66, 184430 (2002).

    Article  Google Scholar 

  2. A. G. Isavnin, “Stochastic resonance in low-disperse magnets: Mechanism of subbarrier magnetization reversal,” Phys. Solid State 43, 1263–1266 (2001).

    Article  CAS  Google Scholar 

  3. A. F. Popkov, “Thermal and quantum fluctuations of a domain wall in a fine magnetic wire,” Phys. Solid State 44, 140–144 (2002).

    Article  CAS  Google Scholar 

  4. V. V. Makhro, “Macroscopic quantum resonance tunneling of domain walls,” Phys. Solid State 40, 1681–1686 (1998).

    Article  CAS  Google Scholar 

  5. V. V. Dobrovitskii and A. K. Zvezdin, “Quantum tunneling of a domain wall in a weak ferromagnet,” J. Exper. Theor. Phys. 82, 766–772 (1996).

    Google Scholar 

  6. E. K. Sadykov, A. G. Isavnin, and A. G. Boldenkov, “On the theory of quantum stochastic resonance in single-domain magnetic particles,” Phys. Solid State 40, 474–476 (1998).

    Article  Google Scholar 

  7. A. A. Ivanov and V. A. Orlov, “A comparative analysis of the mechanisms of pinning of a domain wall in a nanowire,” Phys. Solid State 53, 2441–2449 (2011).

    Article  CAS  Google Scholar 

  8. A. A. Ivanov, V. A. Orlov, M. V. Erementchouk, and N. N. Podolsky, “Statistics of irreversible displacements of domain walls in nanowires,” Eur. Phys. J., B: Condens. Matter Complex Systems 83, 83–93 (2011).

    Article  CAS  Google Scholar 

  9. M. Bahiana, F. S. Amaral, S. Allende, and D. Altbir, “Reversal modes in arrays of interacting magnetic Ni nanowires: Monte Carlo simulations and scaling technique,” Phys. Rev. B: Condens. Matter Mater. Phys. 74, 174412 (2006).

    Article  Google Scholar 

  10. A. N. Grigorenko, V. I. Konov, and P. I. Nikitin, “Magnetostochastic resonance,” Sov. Phys. JETP Lett. 52, 593–596 (1990).

    Google Scholar 

  11. S. Glasstone, K. J. Laider, and H. Eiring, The Theory of Rate Processes (McGraw-Hill, New York, 1941).

    Google Scholar 

  12. V. M. Chernov and V. L. Indenbom, “Overcoming of the elastic field of point defects upon dislocation slip,” Fiz. Tverd. Tela 10, 3331–3341 (1968).

    Google Scholar 

  13. V. M. Chernov, “On the frequency of dislocation vibrations in the elastic field of a point defect,” Fiz. Tverd. Tela 15, 323–325 (1973).

    CAS  Google Scholar 

  14. V. L. Indenbom and A. N. Orlov, Thermally Activated Processes in Crystals (Mir, Moscow, 1973) [in Russian].

    Google Scholar 

  15. V. I. Startsev, V. Ya. Il’ichev, and V. V. Pustovalov, Plasticity and Strength of Metals and Alloys at Low Temperatures (Metallurgiya, Moscow, 1975) [in Russian].

    Google Scholar 

  16. R. Labush, “Statistical theory of dislocation configurations in a random array of point obstacles,” J. Appl. Phys. 48, 4550–4556 (1977).

    Article  Google Scholar 

  17. S. I. Zaitsev and E. M. Nadgornyi, “Simulation of dislocation thermoactive motion through random array of obstacles,” Fiz. Tverd. Tela 15, 2669–2673 (1973).

    Google Scholar 

  18. J. W. Morris, Jr., and D. H. Klahn, “Statistics of the thermally activated glide of a dislocation through a random array of point obstacles,” J. Appl. Phys. 44, 4882–4890 (1974).

    Article  Google Scholar 

  19. V. V. Makhro, “Tunneling of magnetic domain walls in the quasirelativistic limit,” Phys. Solid State 41, 1154–1156 (1999).

    Article  CAS  Google Scholar 

  20. W. Feller, An Introduction to Probability Theory and Its Applications (Wiley, New York, 1971; Mir, Moscow, 1963).

    Google Scholar 

  21. I. V. Lobov, “Method of calculation of the critical dislocation break through an array of randomly situated unequal point obstacles,” Fiz. Met. Metalloved. 61, 817–819 (1989).

    Google Scholar 

  22. E. M. Chudnovsky and L. Gunther, “Quantum tunneling of magnetization in small ferromagnetic particles,” Phys. Rev. Lett. 60, 661–664 (1988).

    Article  CAS  Google Scholar 

  23. O. B. Zaslavskii, “Quantum decay of a metastable state in a spin system,” Phys. Rev. B: Condens. Matter 42, 992–993 (1990).

    Article  Google Scholar 

  24. E. Martinez, L. Lopez-Diaz, L. Torres, C. Tristan, and O. Alejos, “Thermal effects in domain wall motion: Micromagnetic simulations and analytical model,” Phys. Rev. B: Condens. Matter Mater. Phys. 75, 174409 (2007).

    Article  Google Scholar 

  25. V. I. Tikhonov, Outbursts of Random Processes (Nauka, Moscow, 1970) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Orlov.

Additional information

Original Russian Text © A.A. Ivanov, V.A. Orlov, I.N. Orlova, 2013, published in Fizika Metallov i Metallovedenie, 2013, Vol. 114, No. 8, pp. 687–697.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanov, A.A., Orlov, V.A. & Orlova, I.N. On the theory of the thermofluctuation motion of domain walls in nanowires. Phys. Metals Metallogr. 114, 631–641 (2013). https://doi.org/10.1134/S0031918X13080048

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X13080048

Keywords

Navigation