Skip to main content
Log in

Structural heredity in the U-6Nb alloy and conditions for its elimination

  • Structure, Phase Transformations, and Diffusion
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The conditions have been determined for the manifestation of structural heredity in the U-6 wt % Nb alloy with the restoration of the size and shape of grains of the initial high-temperature γ phase in the course of the forward γ → α″ martensitic transformation upon cooling and the reverse α″ → γ transformation upon heating. Contrary to iron-based alloys, the restored γ phase does not undergo recrystallization due to phase-transformation-induced deformation (phase naklep) upon subsequent high-temperature heating. The elimination of structural heredity with a noticeable grain refinement (by almost an order of magnitude, down to 10–20 μm) in the high-temperature γ phase occurs in the process of the repeated quenching from 700°C after the use of one of the preliminary heat treatments (cold deformation of the α″ martensite, the recrystallization of the deformed α″ phase, the high-temperature aging of the initial α″ martensite, and eutectoid decomposition).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. D. Sadovskii, K. A. Malyshev, and B. G. Sazonov, Phase and Structure Transformations upon Steel Heat Treatment (Metallurgizdat, Moscow, 1954) [in Russian].

    Google Scholar 

  2. V. D. Sadovskii, Structural Heredity in Steel (Metallurgiya, Moscow, 1973) [in Russian].

    Google Scholar 

  3. V. M. Schastlivtsev and N. V. Koptseva, “Electron-Microscopic Study of Austenite Formation upon Heat Treatment of Structural Steel,” Fiz. Met. Metalloved. 42, 837–847 (1976).

    CAS  Google Scholar 

  4. V. V. Sagaradze, V. E. Danilchenko, P. L’Heritier, and V. A. Shabashov, “The Structure and Properties of Fe-Ni Alloys with a Nanocrystalline Austenite Formed under Different Conditions of γ → α → γ-Transformations,” Mater. Sci. Eng., A 337, 146–159 (2002).

    Article  Google Scholar 

  5. K. A. Malyshev, V. V. Sagaradze, I. P. Sorokin, et al., Phase-Transformation-Induced Hardening of Austenitic Iron-Nickel-Based Alloys (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  6. V. V. Sagaradze and A. I. Uvarov, Strengthening of Austenitic Steels (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  7. G. Krauss, “The Structure of Austenite Produced by the Reverse Martensitic Transformation,” Acta Metall. 11, 499–509 (1963).

    Article  CAS  Google Scholar 

  8. V. V. Sagaradze and Yu. A. Vaseva, “Strengthening of Fe-Ni Alloys by Disperse Crystals of the γ-Phase,” Fiz. Met. Metalloved. 42, 397–405 (1976).

    CAS  Google Scholar 

  9. V. V. Sagaradze, V. E. Danil’chenko, and Ph. l’Heritier, “Transformation-Induced Hardening and the Formation of Fe-Ni Nanocrystalline Austenite upon γ → α → γ Transformations,” Phys. Met. Metallogr. 92, 371–385 (2001).

    Google Scholar 

  10. V. D. Sadovskii, G. N. Bogacheva, L. V. Smirnov, I. P. Sorokin, and N. A. Kompaneitsev, “An investigation of Phase Recrystallization in Titanium,” Fiz. Met. Metalloved. 10, 397–403 (1960).

    CAS  Google Scholar 

  11. C. P. Chiotti, H. H. Klepfer, and R. W. White, “Lattice Parameters of Uranium from 25 to 1132°C,” Trans. Am. Soc. Met. 51, 772–782 (1959).

    Google Scholar 

  12. M. Anagnostidis, M. Columbie, and H. Monti, “Metastable Phases in Uranium-Niobium Alloys,” J. Nucl. Mater. 11, 67–76 (1964).

    Article  CAS  Google Scholar 

  13. F. L. Addessio, K. H. Zuo, T. A. Mason, and L. G. Brinson, “Model for High-Strain-Rate Deformation of Uranium-Niobium Alloys,” J. Appl. Phys. 93, 9644–9654 (2003).

    Article  CAS  Google Scholar 

  14. R. A. Vandermeer, J. C. Ogle, and W. G. Northcutt, “A Phenomenological Study of the Shape Memory Effect in Polycrystalline Uranium-Niobium Alloys,” Metall. Trans. A 12, 733–741 (1981).

    CAS  Google Scholar 

  15. K. H. Eckelmeyer, A. D. Romig, and L. J. Weirick, “The Effect of Quench Rate on the Microstructure, Mechanical Properties, and Corrosion Behavior of U-6 Wt Pct Nb,” Metall. Trans. A 15, 1319–1330 (1984).

    Article  Google Scholar 

  16. D. V. Brown, R. E. Hackenberg, D. F. Teter, M. A. Bourke, and D. Thoma, “Aging and Deformation of Uranium-Niobium Alloys,” Los Alamos Sci., No. 30, 79–83 (2006).

    Google Scholar 

  17. R. A. Vandermeer, “Phase Transformations in a Uranium + 14 at. % Niobium Alloy,” Acta Metall. 28, 383–393 (1980).

    Article  CAS  Google Scholar 

  18. J. G. Speer and D. V. Edmonds, “An Investigation of the γ → α Martensitic Transformation in Uranium Alloys,” Acta Metall. 36, 1015–1033 (1988).

    Article  CAS  Google Scholar 

  19. B. A. Hatt, “The Orientation Relationship between the Gamma and Alpha Structures in Uranium-Zirconium Alloys,” J. Nucl. Mater. 19, 133–141 (1966).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Sagaradze.

Additional information

Original Russian Text © V.V. Sagaradze, Yu.N. Zuev, S.V. Bondarchuk, I.L. Svyatov, A.E. Shestakov, N.L. Pecherkina, I.G. Kabanova, M.F. Klyukina, 2013, published in Fizika Metallov i Metallovedenie, 2013, Vol. 114, No. 4, pp. 329–338.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sagaradze, V.V., Zuev, Y.N., Bondarchuk, S.V. et al. Structural heredity in the U-6Nb alloy and conditions for its elimination. Phys. Metals Metallogr. 114, 299–307 (2013). https://doi.org/10.1134/S0031918X1304008X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X1304008X

Keywords

Navigation