Skip to main content
Log in

Simulation of three-dimensional micromagnetic structures in magnetically uniaxial films with in-plane anisotropy. Dynamics and structural reconstructions

  • Theory of Metals
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Transition processes in nonequilibrium micromagnetic structures that represent regions of various types of asymmetrical vortex domain walls with closely spaced transition structural elements, including vertical Bloch lines (VBLs), singular points, and clusters consisting of VBLs and singular points, have been studied by the method of three-dimensional numerical simulation of the magnetization behavior. The realization of various scenarios of dynamic behavior, including the annihilation of transition elements accompanied by the liberation of energy and the initiation of wave processes, has been shown to be possible. The simulation was performed for the case of magnetically uniaxial ferromagnetic films with an easy axis parallel to their surface with exact allowance for the inhomogeneous exchange, magnetoanisotropic, and magnetostatic interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. E. LaBonte, “Two-Dimensional Bloch-Type Domain Walls in Ferromagnetic Films,” J. Appl. Phys. 40, 2450–2458 (1969).

    Article  CAS  Google Scholar 

  2. B. E. Argyle, B. Petek, M. E, Re, F. Suits, and D. A. Herman, “Bloch Line Influence on Wall Motion Response in Thin-Film Heads,” J. Appl. Phys. 63, 4033–4035 (1988).

    Article  CAS  Google Scholar 

  3. C. G. Harrison and K. D. Leaver, “The Analysis of Two-Dimensional Domain Wall Structures by Lorentz Microscopy,” Phys. Status Solidi A 15, 415–429 (1973).

    Article  CAS  Google Scholar 

  4. S. Huo, J. E. L. Bishop, J. W. Tucker, W. M. Rainforth, and H. A. Davies, “3-D Simulation of Bloch Lines in 180° Domain Walls in Thin Iron Films,” J. Magn. Magn. Mater. 177–181, 229–230 (1998).

    Article  Google Scholar 

  5. S. Huo, J. E. L. Bishop, J. W. Tucker, W. M. Rainforth, and H. A. Davies, “3-D Micromagnetic Simulation of a Bloch Line between C-Sections of a 180° Domain Wall in a {100} Iron Film,” J. Magn. Magn. Mater. 218, 103–113 (2000).

    Article  CAS  Google Scholar 

  6. M. Redjdal, A. Kakay, T. Trunk, M. F. Ruane, and F. B. Humphrey, “Simulation of Three-Dimensional Nonperiodic Structures of a π-Vertical Bloch Line (pi- VBL) and 2π-VBL (2pi-VBL) in Permalloy Films,” J. Appl. Phys. 89, 7609–7611 (2001).

    Article  CAS  Google Scholar 

  7. M. Redjbal, A. Kakay, M. F. Ruane, and F. B. Humphrey, “Magnetic Domain Wall Transitions Based on Chirality Change and Vortex Position in Thin Permalloy Films,” J. Appl. Phys., 91, 8278–8280 (2002).

    Article  Google Scholar 

  8. V. V. Zverev and B. N. Filippov, “Simulation of Three-Dimensional Micromagnetic Structures in Magnetically Uniaxial Films with In-Plane Anisotropy. I. Static Structures,” Phys. Met. Metallogr. 114, 108–115 (2013).

    Article  Google Scholar 

  9. J. Raabe, R. Pulwey, R. Sattler, T. Schweinbock, J. Zweck, and D. Weiss, “Magnetization Pattern of Ferromagnetic Nanodisks,” J. Appl. Phys. 88, 4437–4439 (2000).

    Article  CAS  Google Scholar 

  10. N. Kikuchi, S. Okamoto, O. Kitakami, Y. Shimada, S. G. Kim, Y. Otani, and K. Fukamichi, “Vertical Bistable Switching of Spin Vortex in Circular Magnetic Dot,” J. Appl. Phys. 90, 6548–6549 (2001).

    Article  CAS  Google Scholar 

  11. Ki-Suk Lee, Byoung-Woo Kang, Young-Sang Yu, and Sang-Koog Kim, “Vortex-Antovortex Pair Driven Magnetization Dynamics Studied by Micromagnetic Simulations,” Appl. Phys. Lett. 85, 1568–1570 (2004).

    Article  CAS  Google Scholar 

  12. Q. F. Xiao, J. Rudge, B. C. Choi, Y. K. Hong, and G. Donohoe, “Dynamics of Vortex Core Switching in Ferromagnetic Nanodisks,” Appl. Phys. Lett. 89, 262507 (2006).

    Article  Google Scholar 

  13. Ki-Suk Lee, K. Y. Guslienko, Jun-Young Lee, Sang-Koog Kim, “Ultrafast Vortex-Core Reversal Dynamics in Ferromagnetic Nanodots,” Phys. Rev. B: Condens. Matter Mater. Phys. 76, 174410 (2007).

    Article  Google Scholar 

  14. R. Hertel, S. Gliga, M. Fahnle, and C. M. Schneider, “Ultrafast Nanomagnetic Toggle Switching of Vortex Cores,” Phys. Rev. Lett. 98, 117201 (2007).

    Article  CAS  Google Scholar 

  15. Ki-Suk Lee, Sangkook Kim, Sang-Koog Kim, “Radiation of Spin Waves from Magnetic Vortex Cores by Their Dynamic Motion and Annihilation Processes,” Appl. Phys. Lett. 87, 192502 (2005).

    Article  Google Scholar 

  16. R. Hertel and C. M. Schneider, “Exchange Explosions: Magnetization Dynamics during Vortex-Antivortex Annihilation,” Phys. Rev. Lett. 97, 177202 (2006).

    Article  Google Scholar 

  17. Sangkook Choi, Ki-Suk Lee, K. Y. Guslienko, and Sang-Koog Kim, “Strong Radiation of Spin Waves by Core Reversal of a magnetic-Flux Vortex and Their Wave Behaviors in Magnetic Nanowire Waveguides,” Phys. Rev. Lett. 98, 087205 (2007).

    Article  Google Scholar 

  18. W. F. Brown, Micromagnetics (Wiley-Interscience, New York, 1963; Nauka, Moscow, 1979).

    Google Scholar 

  19. K. M. Lebecki, M. J. Donahue, and M. W. Gutowski, “Periodic Boundary Conditions for Demagnetization Interactions in Micromagnetic Simulations,” J. Phys. D: Appl. Phys. 41, 175005 (2008).

    Article  Google Scholar 

  20. M. J. Donahue and D. G. Porter, OOMMF User’s Guide, Version 1.0 NISTIR 6376 (National Institute of Standards and Technology, Gaithersburg, Md, 1999).

  21. A. Malozemoff and J. C. Slonczewski, Magnetic Domain Walls in Bubble Materials (Academic, New York, 1979; Mir, Moscow, 1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Zverev.

Additional information

Original Russian Text © V.V. Zverev, B.N. Filippov, 2013, published in Fizika Metallov i Metallovedenie, 2013, Vol. 114, No. 2, pp. 129–135.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zverev, V.V., Filippov, B.N. Simulation of three-dimensional micromagnetic structures in magnetically uniaxial films with in-plane anisotropy. Dynamics and structural reconstructions. Phys. Metals Metallogr. 114, 116–121 (2013). https://doi.org/10.1134/S0031918X13020154

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X13020154

Keywords

Navigation