Skip to main content
Log in

Simulation of three-dimensional micromagnetic structures in magnetically uniaxial films with in-plane anisotropy: Static structures

  • Theory of Metals
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The possible types of transition structures that can arise between the regions of vortex asymmetric domain walls that exist in magnetically uniaxial permalloy films with in-plane anisotropy have been studied by the method of three-dimensional computer simulation of the magnetization behavior. It has been established that, along with the previously found structures of vertical Bloch lines (VBLs), other types of structures can exist, namely, singular (Bloch) points and clusters that consist of VBLs and Bloch points. Spatial configurations and topological characteristics of transition structures have been calculated numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Landau and E. Lifshitz, “On the Theory of the Dispersion of Magnetic Permeability in Ferromagnetic Bodies,” Phys. Z. Sow. 8, 153–159 (1935).

    Google Scholar 

  2. A. Hubert and R. Schäfer, Magnetic Domains: The Analysis of Magnetic Microstructures (Springer, Berlin, 1998).

    Google Scholar 

  3. L. Néel, “Some Properties of Boundaries between Ferromagnetic Domains,” Can. J. Phys., 25(1), 1–20 (1944).

    Google Scholar 

  4. W. F. Brown, Micromagnetics (Wiley-Interscience, New York, 1963; Nauka, Moscow, 1979).

    Google Scholar 

  5. A. Malozemoff and J. C. Slonczewski, Magnetic Domain Walls in Bubble Materials (Academic, New York, 1979; Mir, Moscow, 1982).

    Google Scholar 

  6. R. P. Cowburn, D. K. Koltsov, A. O. Adeyeye, M. E. Welland, and D. M. Tricker, “Single-Domain Circular Nanomagnets,” Phys. Rev. Lett. 83, 1042–1045 (1999).

    Article  CAS  Google Scholar 

  7. J.-Y. Lee, K.-S. Lee, S. Choi, K. Y. Guslienko, and S.-K. Kim, “Dynamic Transformations of the Internal Structure of a Moving Domain Wall in Magnetic Nanostripes,” Phys. Rev. B:Condens. Matter Mater. Phys. 76, 184408 (2007).

    Article  Google Scholar 

  8. R. Varga, K. Richter, A. Zhukov, and V. Larin, “Domain Wall Propagation in Thin Magnetic Wires,” IEEE Trans Magn. 44, 3925–3930 (2008).

    Article  CAS  Google Scholar 

  9. M. Yan, C. Andreas, A. Kakay, F. Garcia-Sanchez, and R. Hertel, “Fast Domain Wall Dynamics in Magnetic Nanotubes: Supression of Walker Breakdown and Cherenkov-like Spin Wave Emission,” Appl. Phys. Lett. 99, 122505 (2011).

    Article  Google Scholar 

  10. H. Zabel, “Progress in Spintronics,” Superlattices Microstruct. 46, 541–553 (2009).

    Article  CAS  Google Scholar 

  11. S. S. P. Parkin, M. Hayashi, and L. Thomas, “Magnetic Domain-Wall Racetrack Memory,” Science 320, 190–194 (2008).

    Article  CAS  Google Scholar 

  12. M. J. Donahue and D. G. Porter, OOMMF User’s Guide, Version 1.0 NISTIR 6376 (National Institute of Standards and Technology, Gaithersburg, Md, 1999).

    Google Scholar 

  13. A. E. LaBonte, “Two-Dimensional Bloch-Type Domain Walls in Ferromagnetic Films,” J. Appl. Phys. 40, 2450–2458 (1969).

    Article  CAS  Google Scholar 

  14. J. N. Chapman, G. R. Morrison, J. P. Jakubovics, and R. A. Taylor, “Determination of Domain Wall Structures in Thin Foils of a Soft Magnetic Alloy,” J. Magn. Magn. Mater. 49 277–285 (1985).

    Article  CAS  Google Scholar 

  15. S. W. Yuan and H. N. Bertram, “Domain-Wall Dynamic Transitions in Thin Films, Phys. Rev. B: Condens. Matter 44, 12395–12405 (1991).

    Article  Google Scholar 

  16. B. N. Filippov, “Static Properties and Nonlinear Dynamics of Domain Walls with an Internal Vortex Structure in Magnetic Films, Fiz. Nizk. Temp. 28, 991–1032 (2002).

    Google Scholar 

  17. B. E. Argyle, B. Petek, M. E, Re, F. Suits, and D. A. Herman, “Bloch Line Influence on Wall Motion Response in Thin-Film Heads,” J. Appl. Phys. 63, 4033–4035 (1988).

    Article  CAS  Google Scholar 

  18. C. G. Harrison and K. D. Leaver, “The Analysis of Two-Dimensional Domain Wall Structures by Lorentz Microscopy,” Phys. Status Solidi A 15, 415–429 (1973).

    Article  CAS  Google Scholar 

  19. S. Huo, J. E. L. Bishop, J. W. Tucker, W. M. Rainforth, and H. A. Davies, “3-D Simulation of Bloch Lines in 180° Domain Walls in Thin Iron Films,” J. Magn. Magn. Mater. 177–181, 229–230 (1998).

    Article  Google Scholar 

  20. S. Huo, J. E. L. Bishop, J. W. Tucker, W. M. Rainforth, and H. A. Davies, “3-D Micromagnetic Simulation of a Bloch Line between C-Sections of a 180° Domain Wall in a {100} Iron Film,” J. Magn. Magn. Mater. 218, 103–113 (2000).

    Article  CAS  Google Scholar 

  21. M. Redjdal, A. Kakay, T. Trunk, M. F. Ruane, and F. B. Humphrey, “Simulation of Three-Dimensional Nonperiodic Structures of a π-Vertical Bloch Line (pi- VBL) and 2π-VBL (2pi-VBL) in Permalloy Films,” J. Appl. Phys. 89, 7609–7611 (2001).

    Article  CAS  Google Scholar 

  22. M. Redjbal, A. Kakay, M. F. Ruane, and F. B. Humphrey, Magnetic Domain Wall Transitions Based on Chirality Change and Vortex Position in Thin Permalloy Films, J. Appl. Phys., 91, 8278–8280 (2002).

    Article  Google Scholar 

  23. K. M. Lebecki, M. J. Donahue, and M. W. Gutowski, “Periodic Boundary Conditions for Demagnetization Interactions in Micromagnetic Simulations,” J. Phys. D: Appl. Phys., 41, 175005 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Zverev.

Additional information

Original Russian Text © V.V. Zverev, B.N. Filippov, 2013, published in Fizika Metallov i Metallovedenie, 2013, Vol. 114, No. 2, pp. 120–128.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zverev, V.V., Filippov, B.N. Simulation of three-dimensional micromagnetic structures in magnetically uniaxial films with in-plane anisotropy: Static structures. Phys. Metals Metallogr. 114, 108–115 (2013). https://doi.org/10.1134/S0031918X13020142

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X13020142

Keywords

Navigation