Skip to main content
Log in

Mössbauer spectroscopy of interfaces in metals

  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Publications on the studies of interfaces in metals by the methods of Mössbauer (nuclear gammaresonance) spectroscopy are reviewed. Physical principles of the Mössbauer effect, various methods of nuclear gamma-resonance (NGR) spectroscopy and the Mössbauer spectra parameters are considered. The available results on grain boundary studies in coarse-grained and nanostructured materials and on interlayer interfaces in multilayers are analyzed. Capabilities of application of absorption and emission Mössbauer spectroscopy as well as of conversion electrons Mössbauer spectroscopy (CEMS) are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. K. Wertheim, Mössbauer Effect: Principles and Applications (Academic Press, New York, 1964).

    Google Scholar 

  2. V. S. Shpinel, Resonance of γ-Rays in Crystals (Nauka, Moscow, 1969) [in Russian].

    Google Scholar 

  3. Chemical Applications of Mössbauer Spectroscopy, Ed. by V. I. Goldansky and R. H. Herber, (Academic Press, New York, 1968).

    Google Scholar 

  4. S. I. Irkaev, R. N. Kuzmin, and A. A. Opalenko, Nuclear γ-Resonance (Moscow State University, Moscow, 1970) [in Russian].

    Google Scholar 

  5. I. P. Suzdalev, Dynamic Effects in γ-Resonance Spectroscopy (Atomizdat, Moscow, 1979) [in Russian].

    Google Scholar 

  6. V. S. Litvinov, S. D. Karakishev, and V. V. Ovchinnikov, Nuclear γ-Resonance Spectroscopy of Alloys (Metallurgiya, Moscow, 1982) [in Russian].

    Google Scholar 

  7. G. N. Belozersky, Mössbauer Spectroscopy as a Method of Surface Studies (Energoatomizdat, Moscow, 1990) [in Russian].

    Google Scholar 

  8. A. Vertes and D. L. Nagy, Mössbauer Spectroscopy of Frozen Solutions (Akademiai Kiado, Budapest, 1990).

    Google Scholar 

  9. E. Murad and E. J. Cashion, Mössbauer Spectroscopy of Environmental Materials and Their Industrial Utilization (Springer-Verlag, Berlin, 2004).

    Book  Google Scholar 

  10. V. V. Ovchinnikov, Mössbauer Methods of Analysis of Atomic and Magnetic Structure of Alloys (Cambridge Int. Sci. Publ., 2006).

  11. B. S. Bokshtein, “Mössbauer (NGR) Spectroscopy,” in Physical Metallurgy and Heat Treatment of Steel and Iron: A Reference Book (Moscow: Internet Engineering, 2004), Vol. 1, 532–552. [in Russian].

    Google Scholar 

  12. N. G. Ivoylov and L. I. Urutskoev, “Effect of ’strange’ Radiation on Mössbauer Spectra of Fe57 in Metal Foils”, Priklad. Fiz., No. 5, 20–25 (2004).

  13. V. V. Popov, “Mössbauer Investigations of Grain-Boundary Diffusion and Segregation,” Defect Diffus. Forum 258260, 497–508 (2006).

    Article  Google Scholar 

  14. B. S. Bokshtein, Yu. V. Voitkobsky, A. A. Zhuhovitsky, and G. N. Pautkina, “Studies of States of Fe Atoms in Ni Grain Boundaries by Mössbauer Method”, Fiz. Tverd. Tela 10, 3699–3701 (1968).

    CAS  Google Scholar 

  15. A. Atkinson and R. I. Taylor, “The Diffusion of 63Ni along Grain Boundaries in Nickel Oxides,” Phil. Mag. 43, 979–998 (1981).

    Article  CAS  Google Scholar 

  16. J. Sommer and Chr. Herzig, “Direct Determination of Grain-Boundary and Dislocation Self-Diffusion Coefficients in Silver from Experiments in Type-C Kinetics”, J. Appl. Phys. 72, 2758–2766 (1992).

    Article  CAS  Google Scholar 

  17. V. V. Popov, A. V. Sergeev, N. K. Arkhipova, and A. Yu. Istomina, “Determination of the Parameters of Grain-Boundary Diffusion and Segregation of Co in W Using an Improved Model of Grain-Boundary Diffusion,” Phys. Met. Metallogr. 112, 256–266 (2011).

    Article  Google Scholar 

  18. G. Palumbo, U. Erb, and K. T. Aust, “Triple Line Disclination Effects on the Mechanical Behavior of Materials”, Scripta Metall. Mater. 24, 2347–2350 (1990).

    Article  CAS  Google Scholar 

  19. V. N. Kaigorodov and S. M. Klotsman, “Nuclear γ-Resonance on Fe-57 Nuclei in Copper Grain Boundaries”, JETP Lett. 28, 356–359 (1978).

    Google Scholar 

  20. O. Schnetweiss, J. Ermák, I. Turek, and P. Lejek, “Investigations of Grain Boundaries in Copper Using Emission Mössbauer Spectroscopy,” Hyperfine Interact. 126, 215–218 (2000).

    Article  Google Scholar 

  21. J. C. Fisher, “Calculation of Diffusion Penetration Curves of Surface and Grain Boundary Diffusion,” J. Appl. Phys. 22, 74–80 (1951).

    Article  CAS  Google Scholar 

  22. I. Kaur, Y. Mishin, and W. Gust, Fundamentals of Grain and Interface Boundary Diffusion (Wiley, Chichester, 1995).

    Google Scholar 

  23. Y. Mishin, Chr. Herzig, J. Bernardini, and W. Gust, “Grain Boundary Diffusion: Fundamentals to Recent Developments,” Int. Mater. Rev. 42, 155–178 (1997).

    Article  CAS  Google Scholar 

  24. Y. Mishin and Chr. Herzig, “Grain Boundary Diffusion: Recent Progress and Future Research,” Mater. Sci. Eng. A. 260, 55–71 (1999).

    Article  Google Scholar 

  25. L. G. Harrisson, “Influence of Dislocations on Diffusion Kinetics in Solids with Particular Reference to Alkali Halides,” Trans. Faraday Soc. 57, 1191–1199 (1961).

    Article  Google Scholar 

  26. V. N. Kaigorodov, V. V. Popov, E. N. Popova, T. N. Pavlov, and S. V. Efremova, “Mössbauer Investigation of Sn Diffusion and Segregation in Grain Boundaries of Polycrystalline Nb,” J. Phase Equilib. Diff. 26, 510–515 (2005).

    CAS  Google Scholar 

  27. V. V. Popov, “Emission Mössbauer Spectroscopy of Grain Boundaries in Polycrystalline Copper,” Phys. Met. Metallogr. 113, 883–887 (2012).

    Article  Google Scholar 

  28. V. V. Popov, “Analysis of Possibilities of Fisher’s Model Development,” Solid State Phenom. 138, 133–144 (2008).

    Article  CAS  Google Scholar 

  29. V. V. Popov, “Model of Grain-Boundary Diffusion with Allowance for Near-Boundary Layers of Equilibrium Composition,” Phys. Met. Metallogr. 102, 453–461 (2006).

    Article  Google Scholar 

  30. V. N. Kaigorodov and S. M. Klotsman, “Impurity States in the Grain Boundaries and Adjacent Crystalline Regions,” Phys. Rev. B: Condens. Matter Matter Mater. Phys. 49, 9374–9399 (1994).

    Google Scholar 

  31. S. M. Klotsman, V. N. Kaigorodov, M. I. Kurkin and V. V. Dyakin, “Segregation of 57Co Atomic Probes in the Cores of Grain Boundaries in d-Transition Metals,” Interf. Sci. 8, 323–334 (2000).

    Article  CAS  Google Scholar 

  32. M. S. Dudarev, V. Y. Dyakin, V. N. Kaigorodov, S. M. Klotsman, and M. I. Kurkin, “Experimental Determination of Near-Boundary (“Pumping-out”) Diffusion Coefficients in Polycrystals upon Diffusion in the Regime of Sequential Isochronous Annealings,” Fiz. Met. Metalloved. 79, 565–575 (1995).

    Google Scholar 

  33. V. N. Kaigorodov, S. M. Klotsman, V. M. Koloskov, and G. N. Tatarinova, “Nuclear Gamma Resonance Investigation of Grain Boundaries in Niobium and Molybdenum,” Fiz. Met. Metalloved. 66(5), 116–123 (1988).

    Google Scholar 

  34. A. P. Babichev, N. A. Babushkina, A. M. Bratkovskaya, et al., Handbook of Physical Quantities, Ed. by I. S. Grigoriev and E. Z. Meilihov (CRC Press, Boca Raton, 1996) [in Russian].

    Google Scholar 

  35. V. N. Kaigorodov, S. M. Klotsman, M. I. Kurkin, V. V. Dyakin and D. V. Zherebtsov, “Intercrystalline Diffusion of Cobalt in Polycrystalline Tungsten: II. Experimental Study of Diffusion in the Core of Crystallite-Conjugation Regions and Adjacent Zones,” Phys. Met. Metallogr. 85, 212–217 (1998).

    Google Scholar 

  36. V. V. Popov, “Structure and Properties of Grain Boundaries,” in Current Trends in Chemical Engineering, Ed. by J. M. P. Q. Delgado, (Studium Press LLC, 2010), Ch. 3, pp. 49–103.

  37. M. I. Kurkin, S. M. Klotsman, V. N. Kaigorodov, and V. V. Dyakin, “On the Nature of States Occupied by Atomic Probes in the Zone of Intercrystalline Diffusion: The Case of Extremely Small Bulk-Diffusion Length,” Phys. Met. Metallogr. 82, 419–426 (1996).

    Google Scholar 

  38. S. M. Klotsman, S. V. Osetrov, and A. N. Timofeev, “Volume Diffusion in Tungsten Single Crystals,” Phys. Rev. B: Condens. Matter Mater. Phys.. 46, 2831–2837 (1992).

    Article  CAS  Google Scholar 

  39. V. N. Kaigorodov, S. M. Klotsman, and S. N. Shlyapnikov, “The Structure and Properties of Impurity States Localized within the Grain Boundary Core and in Nearby Regions of Gold Crystals,” Fiz. Met. Metalloved. 75(3), 252–259 (1993).

    Google Scholar 

  40. H. Gleiter, “Nanostructured Materials”, Prog. Mater. Sci. 33, 223–315 (1989).

    Article  CAS  Google Scholar 

  41. H. Gleiter and P. Marquardt, “Nanokristalline Strukturenein Weg zu neue Materialen”, Z. Metallkd. 75, 263–267 (1984).

    CAS  Google Scholar 

  42. Y. Sasaki, M. Hyakkai, E. Kita, A. Tasaki, H. Tanimoto, and Y. Iwamoto, “Magnetic Properties and Mössbauer Study of Fe Nanocrystals Prepared by the Gas-Deposition Method,” J. Appl. Phys. 33, 4736–4738 (1997).

    Article  Google Scholar 

  43. A. E. Yermakov, M. A. Uimin, V. R. Galakhov, A. A. Mysik, O. V. Koryakova, V. G. Kharchuk, V. A. Vykhodetz, V. S. Gaviko, K. Kuepper, S. Robin, and M. Neumann, “Structure and Surface of CuO-Based Nanocrystalline Powders”, J. Metastab. Nanosryst. Mater. 24–25, 43–48 (2005).

    Article  Google Scholar 

  44. R. Birringer, U. Herr, and H. Gleiter, “Nanocrystalline Materials-First Report,” Trans. Jpn. Inst. Met. Suppl. 27, 43–52 (1986).

    Google Scholar 

  45. H. Gleiter, “Nanostructured Materials”, Adv. Mater. 4, 474–481 (1992).

    Article  CAS  Google Scholar 

  46. H. Gleiter, “Nanocrystalline Solids”, J. Appl. Cryst. 24, 79–90 (1991).

    Article  CAS  Google Scholar 

  47. T. Haubold, F. Boscherini, S. Pascarelli, S. Mobilio, and H. Gleiter, “Extended X-ray Absorption Fine-Structure Studies on Co-Doped Nanocrystalline Cu,” Phil. Mag. A 66, 591–596 (1992).

    Article  CAS  Google Scholar 

  48. T. Mütschele and R. Kirchheim, “Segregation and Diffusion of Hydrogen in Grain Boundaries of Palladium,” Scripta Metall. 21, 135–140 (1987).

    Article  Google Scholar 

  49. U. Herr, J. Jing, R. Birringer, U. Gonser, and H. Gleiter, “Investigation of Nanocrystalline Iron Materials by Mössbauer Spectroscopy.” Appl. Phys. Lett. 50, 472–474 (1987).

    Article  CAS  Google Scholar 

  50. L. R. Fitzsimmons, J. A. Eastman, M. Mullerstach, and G. Wallner, “Structural Characterization of Nanometer-Sized Crystalline Pd by X-ray Diffraction Techniques,” Phys. Rev. B: Condens. Matter Mater. Phys. 44, 2452–2460 (1991).

    Article  CAS  Google Scholar 

  51. J. A. Eastman, M. R. Fitzsimmons, M. Miller-Stach, G. Wallner, and W. T. Elam, “Characterization of Nanocrystalline Pd by X-ray Diffraction and EXAFS,” Nanostruct. Mater. 1, 47–52 (1992).

    Article  CAS  Google Scholar 

  52. G. J. Thomas, R. W. Siegel, and J.A. Eastman, “Grain Boundaries in Nanophase Palladium: High Resolution Electron Microscopy and Image Simulation,” Scripta Metall. Mater. 24, 201–206 (1990).

    Article  CAS  Google Scholar 

  53. R. W. Siegel and G. J. Thomas, “Grain Boundaries in Nanophase Materials” Ultramicroscopy 40, 376–384 (1992).

    Article  Google Scholar 

  54. W. Wunderlich, Y. Ishidaand, and R. Maurer, “HREM Studies of the Microstructure of Nanocrystalline Palladium,” Scripta Metall. Mater. 24, 403–408 (1990).

    Article  CAS  Google Scholar 

  55. S. K. Ganapathi and D. A. Rigney, “A HREM Study of the Nanocrystalline Material Produced by Sliding Wear Processes,” Scripta Metal. Mater. 24, 1675–1678 (1990).

    Article  CAS  Google Scholar 

  56. C. A. Melendres, A. Narayanasamy, V. A. Maroni, and R. W. Siegel, “Raman Spectroscopy of Nanophase TiO2,” J. Mater. Res. 4, 1246–1250 (1989).

    Article  CAS  Google Scholar 

  57. S. J. Campbell, J. Chadwick, R. J. Pollard, H. Gleiter, and U. Gonser, “Nanostructured Fe and Fe-Pd Studied by Mössbauer Spectroscopy,” Physica B 205, 72–80 (1995).

    Article  CAS  Google Scholar 

  58. G. Rixecker, R. Birringer, U. Gonser, and H. Gleiter, “Grain Boundaries in Nanocrystalline Tungsten Probed by 57Fe Mössbauer Spectroscopy.” Phys. Stat. Sol. (a) 173, 305–316 (1999).

    Article  CAS  Google Scholar 

  59. D. G. Rancourt, “Accurate Site Population from Mössbauer Spectroscopy,” Nucl. Instrum. Meth. B 44, 199–210 (1989).

    Article  Google Scholar 

  60. B. Fultz, H. Kuwano, and H. Ouyang, “Average Widths of Grain Boundaries in Nanophase Alloys Synthesized by Mechanical Attrition,” J. Appl. Phys. 77, 3458–3466 (1995).

    Article  CAS  Google Scholar 

  61. E. P. Elsukov, G. N. Konygin, and V.E. Porsev, “Mössbauer Spectroscopy of the Nanocrystalline Materials”, Phys. Met. Metallogr. 105, 141–149 (2008).

    Google Scholar 

  62. V. N. Kaigorodov and S. M. Klotsman, “Investigation of Nanometer-Sized Polycrystalline Palladium by Emission Nuclearγ-Ray Resonance Spectroscopy,” Phys. Rev. B: Condens. Matter Mater. Phys. 46, 5928–5932 (1992).

    Article  CAS  Google Scholar 

  63. V. V. Popov, “Mössbauer Spectroscopy Studies of Grain Boundaries in Nanostructured Metals,” Defect Diffus. Forum 273-276, 506–513 (2008).

    Article  CAS  Google Scholar 

  64. Y. Sasaki, K. Shiozawa, H. Tanimoto, Y. Iwamoto, E. Kita, and A. Tasaki, “Fabrication of Metal Nanocrystalline Films by Gas-Deposition Method”, Mater. Sci. Eng. A 217–218, 344–347 (1996).

    Google Scholar 

  65. E. Kita, K. Shiozawa, Y. Sasaki, Y. Iwamoto, and A. Tasaki, “Ni and Ni-Fe Nanocrystalline Films Prepared with Gas-Deposition Method”, IEEE Trans. Magn. 32, 4487–4489 (1996).

    Article  CAS  Google Scholar 

  66. A. E. Yermakov, V. V. Popov, A. V. Stolbovskiy, M. A. Uimin, and I. V. Blinov, “Mössbauer Spectroscopy of Interfaces in Nanocrystalline Au” Phys. Met. Metallogr. 114 (2013) (in press).

  67. Mössbauer Effect Data Center (MEDC): www.unca.edu/medc

  68. P. Schaaf, G. Rixecker, E. Yang, and C. N. J. Wagner, “Study of Nanocrystalline and Amorphous Powders Prepared by Mechanical Alloying,” Hyperfine Interact. 94, 2239–2244 (1994).

    Article  CAS  Google Scholar 

  69. L. Del Bianco, A. Hernando, E. Bonetti, and E. Navarro, “Grain Boundary Structure and Magnetic Behavior in Nanocrystalline Ball-Milled Iron,” Phys. Rev. B: Condens. Matter Mater. Phys. 56, 8895–8901 (1997).

    Google Scholar 

  70. B. Fultz and H. N. Frase, “Grain Boundaries of Nanocrystalline Materials—Their Widths, Compositions, and Internal Structures,” Hyperfine Interact. 130, 81–108 (2000).

    Article  CAS  Google Scholar 

  71. H. Kumano, H. Ouyang, and B. Filtz, “A Mössbauer Spectroscopy Study of Magnetic Properties and Debye Temperature of Nanocrystalline Cr-Fe”, Mater. Sci. Forum. 88–90, 561–568 (1992).

    Article  Google Scholar 

  72. H. Kumano, H. Ouyang, and B. Filtz, “A Mössbauer Spectrometry Study of Nanophase Cr-Fe Synthesized by Mechanical Alloying: A Measurement of Grain Boundary Width”, Nanostr. Mater. 1, 143–148 (1992).

    Article  Google Scholar 

  73. A. A. Novakova, O. V. Agladze, T. Yu. Kiseleva, B. P. Tarasov, and N. S. Perov, “The Grain Boundary Structure Influence on the Magnetic Properties of Nanocrystalline Iron” Izv. Ross. Akad. Nauk., Ser. Fiz. 65, 1016–1021 (2001).

    CAS  Google Scholar 

  74. A. Hernando, P. Crespo, M. S. Flores, L. del Bianco, and F. Briones, “Disordered Magnetism at the Grain Boundary of Pure Nanocrystalline Iron”, Mater. Sci. Forum 386–388, 447–454 (2002).

    Article  Google Scholar 

  75. J. Balogh, T. Kemeny, I. Vinkze, S. Slabo, D. L. Beke, and J. Toth, “Comment on ‘Grain-Boundary Structure and Magnetic Behavior in Nanocrystalline Ball-Milled Iron’”, Phys. Rev. B: Condens. Matter Mater. Phys. 59, 14786–14787 (1999).

    Article  CAS  Google Scholar 

  76. L. del Bianco, A. Hernando, E. Bonetti, and E. Navarro, ’Reply to ‘Comment on “Grain-Boundary Structure and Magnetic Behavior in Nanocrystalline Ball-Milled Iron,”” Phys. Rev. B: Condens. Matter Mater. Phys. 59, 14788–14789 (1999).

    Article  Google Scholar 

  77. J. Balogh, L. Bujdoso, D. Kaptas, T. Kemeny, I. Vinkze, S. Slabo, and D. L. Beke, “Mössbauer Study of Interface of Iron Nanocrystallites,” Phys. Rev. B: Condens. Matter Mater. Phys. 61, 4109–4116 (2000).

    Article  CAS  Google Scholar 

  78. G. Rixecker, R. Birringer, A. Hartenberger, A. Himbert, A Ries, and H. Gleiter, “Mössbauer Effect of Fe-57 in Nanostructured Transition Metal-Iron Alloys Obtained by Mechanical Alloying,” Nanostr. Mater. 6, 629–633 (1995).

    Article  Google Scholar 

  79. G. Rixecker, R. Birringer, U. Gonser, and H. Gleiter, “Grain Boundaries in Nanocrystalline Tungsten Probed by 57Fe Mössbauer Spectroscopy,” Phys. Stat. Sol. (a) 173, 305–316 (1999).

    Article  CAS  Google Scholar 

  80. G. Rixecker, “Mössbauer Spectroscopic Studies of Defect Structure and Alloying Effects in Nanostructured Materials,” Hyperfine Interact. 130, 127–150 (2000).

    Article  CAS  Google Scholar 

  81. G. Rixecker, “The Difficulty of Isolating Grain Boundary Components in Mössbauer Spectra of Ball-Milled Materials: Iron and Silver-Iron Alloys,” Solid State Commun. 122, 299–302 (2002).

    Article  CAS  Google Scholar 

  82. R. Z. Valiev, R. R. Mulyukov, V. V. Ovchinnikov, “Direction of a Grain-Boundary Phase in Submicrometer-Grained Iron,” Phil. Mag. Lett. 62, 253–256 (1990).

    Article  CAS  Google Scholar 

  83. R. Z. Valiev, R. R. Mulyukov, V. V. Ovchinnikov, and V. A. Shabashov, “Mössbauer Analysis of Submicron-Grained Iron,” Scripta Metall. Mater. 25, 2717–2722 (1991).

    Article  CAS  Google Scholar 

  84. V. A. Shabashov, V. V. Ovchinnikov, R. R. Mulyukov, R. Z. Valiev, and N. P. Filippova, “Determination of the ‘Grain-Boundary Phase’ in Submicrocrystalline Iron by Mössbauer Spectroscopy”, Phys. Met. Metallogr. 85, 318–326 (1998).

    Google Scholar 

  85. V. V. Popov, V. N. Kaigorodov, E. N. Popova, and A. V. Stolbovsky, “NGR Investigation of Grain-Boundary Diffusion in Poly- and Nanocrystalline Nb,” Defect Diffus. Forum 263, 69–74 (2007).

    Article  CAS  Google Scholar 

  86. V. V. Popov, V. N. Kaigorodov, E. N. Popova, and A. V. Stolbovsky, “Mössbauer Emission Spectroscopy of Grain Boundaries in Poly- and Nanocrystalline Niobium”, Bull. Russ. Acad. Sci.: Phys. 71, 1244–1248 (2007).

    Article  Google Scholar 

  87. V. V. Popov, R. Z. Valiev, E. N. Popova, A. V. Sergeev, A. V. Stolbovsky, and V. U. Kazihanov, “Structure and Properties of Grain Boundaries in Submicrocrystalline W Obtained by Severe Plastic Deformation,” Defect Diffus. Forum 283–286, 629–638 (2009).

    Article  Google Scholar 

  88. V. V. Popov, “Emission Mössbauer Spectroscopy of Grain Boundaries in Poly- and Nanocrystalline Metals,” 289–292, 633–640 (2009).

    Google Scholar 

  89. V. V. Popov, A. V. Sergeev, A. N. Timofeev, E. V. Kovalenko, G. P. Grabovetskaya, and I. P. Mishin, “Structure and Properties of Grain Boundaries in Submicrocrystalline Molybdenum Prepared by High-Pressure Torsion,” Phys. Met. Metallogr. 109, 556–562 (2010).

    Article  Google Scholar 

  90. V. V. Popov, G. P. Grabovetskaya, A. V. Sergeev, and I. P. Mishin, “Structure, Thermal Stability and Properties of Grain Boundaries of Submicrocrystalline Mo Obtained by Severe Plastic Deformation,” Defect Diffus. Forum 326–328,674–681 (2012).

    Article  CAS  Google Scholar 

  91. E. N. Popova, V. V. Popov, E. P. Romanov, and V. P. Pilyugin, “Thermal Stability of Nanocrystalline Nb Produced by Severe Plastic Deformation,” Phys. Met. Metallogr. 101, 52–57 (2006).

    Article  Google Scholar 

  92. S. Li, P. P. Freitas, M. S. Rogalski, M. Azevedo, J. B. Sousa, Z. N. Dai, J. C. Soares, N. Matsakawa, and H. Sakakima, “Magnetic Properties and Structure of a New Multilayer [FeTaN/TaN]n for Recording Heads,” J. Appl. Phys. 81, 4501–4503 (1997).

    Article  CAS  Google Scholar 

  93. V. V. Ustinov, V. A. Tsurin, L. N. Romashev, V. V. Kononikhina, and V. V. Ovchinnikov, “Mössbauer Spectroscopy of Interlayer Boundaries in Magneto-Noncollinear [57Fe/Cr]12/MgO (100) Superlattices,” Tech. Phys. Lett. 25, 459–461 (1999).

    Article  CAS  Google Scholar 

  94. M. S. Rogalsky, “Thin Film Nuclear Resonance Spectroscopy,” Nondestr. Test. Eval. 15, 15–64 (1998).

    Article  Google Scholar 

  95. M. S. Rogalsky, “Nuclear Resonance in Magnetic Thin Films and Multilayers”, in Handbook of Thin Films Materials, Ed. by H. S. Nalva, (Academic Press, 2002), Ch. 11, pp. 555–587.

  96. F. Klinkhammer, Ch. Sauer, E. Yu. Tsymbal, S. Handschuh, Q. Leng, and W. Zinn, “Interface Roughness in Fe (100)/Cr Film Structures Studied by CEMS,” J. Magn. Magn. Mater. 161, 49–56 (1996).

    Article  CAS  Google Scholar 

  97. V. M. Uzdin, H. Schör, W. Keune, and M. Walterfang, “Fe/Cr Interface Magnetism: Correlation between Hyperfine Fields and Magnetic Moments”, Phys. Rev. B: Condens. Matter Mater. Phys. 63, 104–407 (2001).

    Article  CAS  Google Scholar 

  98. B. Sahoo, W. A. A. Macedo, W. Keune, V. Kuncser, J. Eisenmenger, J. Nogues, I. K. Schuller, I. Felner, K. Liu, and R. Rohlsberger, “Mössbauer Spectroscopical Investigation of the Exchange Biased Fe/MnF2 Interface,” Hyperfine Interact. 169, 1371–1377 (2006).

    Article  CAS  Google Scholar 

  99. T. P. Krinitsina, E. A. Kravtsov, V. V. Lauter-Passiouk, H. J. Lauter, V. V. Popov, L. N. Romashev, V. A. Tsurin, A. M. Burkhanov, and V. V. Ustinov, “Morphology of Crystallites and Magnetic Structure of Non-Collinear Fe/Cr Multilayers,” J. Magn. Magn. Mater. 203, 181–183 (1999).

    Article  CAS  Google Scholar 

  100. V. V. Ustinov, V. A. Tsurin, L. N. Romashev, V. V. Kononikhina, and V. V. Ovchinnikov, “Study of Atomic and Magnetic Structure of Fe/Cr Superlattices Using Mössbauer Spectroscopy,” Bull. Russ. Acad. Sci.: Phys. 69, 1624–1630 (2005).

    Google Scholar 

  101. V. A. Tsurin, L. N. Romashev, M. A. Milyaev, and V. V. Ustinov, “Investigation of the Effect of Annealing on the Interface Structure in Fe/Cr Superlattices by Conversion Electron Mössbauer Spectroscopy,” Bull. Russ. Acad. Sci.: Phys. 71, 1240–1243 (2007).

    Article  Google Scholar 

  102. V. A. Tsurin, L. N. Romashev, V. V. Ustinov, A. P. Tankeev, and V. V. Ovchinnikov, “Mössbauer Spectroscopy Study of the Formation of Fe Layers in Fe/Cr Superlattices,” Tech. Phys. Lett. 35, 133–136 (2009).

    Article  CAS  Google Scholar 

  103. V. A. Tsurin, L. N. Romashev, and V. V. Ustinov, “Mössbauer Study of Spatial Dispersion of Magnetization at Fe/Cr Superlattice Interfaces,” Bull. Russ. Acad. Sci.: Phys. 74, 352–357 (2010).

    Article  Google Scholar 

  104. R. Schad, P. Belien, G. Verbanck, K. Temst, V. V. Moshchalkov, Y. Bruynseraede, D. Bahr, J. Falta, J. Dekoster, and G. Langouche, “Giant Magnetoresistance in Fe/Cr Superlattices without Bulk Scattering,” Europhys. Lett. 44, 379–385 (1998).

    Article  CAS  Google Scholar 

  105. V. V. Ustinov, L. N. Romashev, M. A. Milyaev, A. V. Korolev, T. P. Krinitsina, and A. M. Burkhanov, “Kondo-Like Effect in the Resistivity of Superparamagnetic Cluster-Layered Fe/Cr Nanostructures,” J. Magn. Magn. Mater. 300, 148–152 (2006).

    Article  CAS  Google Scholar 

  106. V. V. Ustinov, V. N. Kaigorodov, V. V. Popov, T. P. Krinitsina, N. K. Arkhipova, S. A. Matveev, A. M. Burkhanov, and S. A. Efremova, “Mössbauer Spectroscopy of Interphase Boundaries of Co/CoO Bilayers,” Phys. Met. Metallogr. 101, 17–26 (2006).

    Article  Google Scholar 

  107. A. E. Berkowitz and K. Takano, “Exchange Anisotropy — a Review,” J. Magn. Magn. Mater. 200, 552–570 (1999).

    Article  CAS  Google Scholar 

  108. J. Nogues, J. Sort, V. Langlais, V. Skumryev, S. Surinach, J. S. Munoz, and M. D. Baro, “Exchange Bias in Nanostructures,” Phys. Rep. 422, 65–117(2005).

    Article  Google Scholar 

  109. S. V. Vonsovskii, Magnetism (Wiley, Chichester, 1974).

    Google Scholar 

  110. G. K. Wertheim, “Hyperfine Structure of Divalent and Trivalent 57Fe in Cobalt Oxide,” Phys. Rev. 124, 764–767 (1961).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Popov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popov, V.V. Mössbauer spectroscopy of interfaces in metals. Phys. Metals Metallogr. 113, 1257–1289 (2012). https://doi.org/10.1134/S0031918X12130029

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X12130029

Keywords

Navigation