Skip to main content
Log in

Molecular dynamics simulation of surface segregation, diffusion and reaction phenomena in equiatomic Ni-Al systems

  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The molecular dynamics method is used to provide fundamental insights into surface segregation, bulk diffusion and alloying reaction phenomena in equiatomic Ni-Al systems. This knowledge can serve as a guide for the search and development of economic routes for controlling microstructure and properties of the intermetallic compound NiAl. This paper gives an overview of recent molecular dynamics simulations in the area along with other theoretical calculations and experimental measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. B. Miracle, “The Physical and Mechanical Properties of NiAl,” Acta Metall. Mater. 41, 649–684 (1993).

    Article  CAS  Google Scholar 

  2. Intermetallic Compounds: Structural Applications, Vol. 4, ed. by J. H. Westbrook and R. L. Fleischer (Wiley, New York, 2000).

    Google Scholar 

  3. H.-J. Freund, H. Kuhlenbeck, and V. Staemmler, “Oxide Surfaces,” Rep. Prog. Phys. 59, 283–347, (1996).

    Article  CAS  Google Scholar 

  4. M. W. Finnis, A. Y. Lozovoi, and A. Alavi, “The Oxidation of NiAl: What Can We Learn from Ab Initio Calculations?” Ann. Rev. Mater. Res. 35, 167–207, (2005).

    Article  CAS  Google Scholar 

  5. J. A. Brown and Y. Mishin, “Monte Carlo Modeling of Low-Index Surfaces in Stoichiometric and Ni-Rich NiAl,” Phys. Rev. B: Condens. Matter Mater. Phys. 67, 195414 (2003).

    Article  CAS  Google Scholar 

  6. J. A. Brown and Y. Mishin, “Effect of Surface Stress on Ni Segregation in (110) NiAl Thin Films,” Phys. Rev. B: Condens. Matter Mater. Phys. 69, 195407 (2004).

    Article  CAS  Google Scholar 

  7. A. J. Bradley and A. Taylor, “An X-ray Analysis of the Nickel-Aluminum System,” Proc. R. Soc. Lond. Ser. A 159, 56–72 (1937).

    Article  CAS  Google Scholar 

  8. A. Taylor and N. J. Doyle, “Further Studies on the Nickel-Aluminum System. I. β-NiAl and δ-Ni2Al3 Phase Fields,” J. Appl. Crystallogr. 5, 201–209 (1972).

    Article  CAS  Google Scholar 

  9. B. Meyer and M. Fähnle, “Atomic Defects in the Ordered Compound B2-NiAl: A Combination of Ab Initio Electron Theory and Statistical Mechanics,” Phys. Rev. B: Condens. Matter Mater. Phys. 59, 6072–6082 (1999).

    Article  CAS  Google Scholar 

  10. P. A. Korzhavyi, A. V. Ruban, A. Y. Lozovoi, Y. K. Vekilov, I. A. Abrikosov, and B. Johanson, “Constitutional and Thermal Point Defects in B2 NiAl,” Phys. Rev. B: Condens. Matter Mater. Phys. 61, 6003–6018 (2000).

    Article  CAS  Google Scholar 

  11. A. Y. Lozovoi and Y. Mishin, “Point Defects in NiAl: The Effect of Lattice Vibrations,” Phys. Rev. B: Condens. Matter Mater. Phys. 68, 184113 (2003).

    Article  CAS  Google Scholar 

  12. H. L. Davis and J. R. Noonan, “Rippled Relaxation in the (110) Surface of the Ordered Metallic Alloy NiAl,” Phys. Rev. Lett. 54, 566–569 (1985).

    Article  CAS  Google Scholar 

  13. S. M. Yalisove and W. R. Graham, “Multilayer Rippled Structure of the NiAl(110) Surface: A Medium Energy Ion Scattering Study,” Surf. Sci. 183, 556–564 (1987).

    Article  CAS  Google Scholar 

  14. K. F. McCarty, J. A. Nobel, and N. C. Bartlet, “Vacancies in Solids and the Stability of Surface Morphology,” Nature 412, 622–625 (2001).

    Article  CAS  Google Scholar 

  15. K. F. McCarty, J. A. Nobel, and N. C. Bartlet, “Surface Dynamics Dominated by Bulk Thermal Defects: The Case of NiAl(110).” Phys. Rev. B: Condens. Matter Mater. Phys. 71, 085421 (2005).

    Article  CAS  Google Scholar 

  16. J. R. Noonan and H. L. Davis, “Mixture of Ordered Domains in the NiAl(111) Surface,” Phys. Rev. Lett. 59, 1714–1717 (1987).

    Article  CAS  Google Scholar 

  17. D. R. Mullins and S. H. Overbury, “The Structure and Composition of the NiAl(110) and NiAl(100) Surfaces,” Surf. Sci. 199(1–2), 141–153 (1988).

    Article  CAS  Google Scholar 

  18. S.A. Chambers, “Surface Termination of Epitaxial NiAl on GaAs(001) by High-Angular-Resolution X-ray Photoelectron Diffraction,” Phys. Rev. B: Condens. Matter Mater. Phys. 42, 10865–10872 (1990).

    Article  CAS  Google Scholar 

  19. W. D. Roos, J. du Plessis, G. N. van Wyk, E. Taglauer, and S. Wolf, “Surface Structure and Composition of NiAl(100) by Low-Energy Ion Scattering,” J. Vac. Sci. Technol. A 14, 1648–1651 (1996).

    Article  CAS  Google Scholar 

  20. M. H. Yoo and C. L. Fu, “On the Theory of Cleavage Fracture in B2-Type Aluminides—FeAl and NiAl,” Scripta Metall. Mater. 25, 2345–2350 (1991).

    Article  CAS  Google Scholar 

  21. A. T. Hanbicki, A. P. Baddorf, E. W. Plummer, B. Hammer, and M. Scheffler, “The Interaction of Hydrogen with the (110) Surface of NiAl,” Surf. Sci. 331–333,Part A, 811–817 (1995).

    Article  Google Scholar 

  22. N. I. Medvedeva, O. N. Mryasov, Y. N. Gornostyrev, D. L. Novikov, and A. J. Freeman, “First-Principles Total-Energy Calculations for Planar Shear and Cleavage Decohesion Processes in B2-Ordered NiAl and FeAl,” Phys. Rev. B: Condens. Matter Mater. Phys. 54, 13506–13514 (1996).

    Article  Google Scholar 

  23. A. Y. Lozovoi, A. Alavi, and M. W. Finnis, “Surface Stoichiometry and the Initial Oxidation of NiAl(110),” Phys. Rev. Lett. 85, 610–613 (2000).

    Article  CAS  Google Scholar 

  24. Y. Mishin, M. J. Mehl, and D. A. Papaconstantopoulos, “Embedded-Atom Potential for B2-NiAl,” Phys. Rev. B: Condens. Matter Mater. Phys. 65, 224114 (2002).

    Article  CAS  Google Scholar 

  25. R. Bohn, T. Haubold, R. Birringer, and H. Gleiter, Nanocrystalline Intermetallic Compounds an Approach to Ductility?” Scripta Metall. 25, 811–816 (1991).

    Article  CAS  Google Scholar 

  26. M. Fukumoto, M. Yamasaki, M. Nie, and T. Yasui, “Synthesis and Characterization of Nano-Structured NiAl Intermetallic Compound Coating.” Quart. J. Jpn. Weld. Soc. 24, 87–92 (2006).

    Article  CAS  Google Scholar 

  27. T Shibata, B.A. Bunker, Z.Y. Zhang, D. Meisel, C. F. Vardeman, and J. D. Gezelter, “Size Dependent Spontaneous Alloying of Au-Ag Nanoparticles,” J. Am. Chem. Soc. 124, 11989–11996 (2002).

    Article  CAS  Google Scholar 

  28. S. Dong, P. Hou, H. Cheng, H. Yang, and G. Zou, “Fabrication of Intermetallic NiAl by Self-Propagating High-Temperature Synthesis Reaction Using Aluminum Nanopowder under High Pressure,” J. Phys.: Condens. Matter 14, 11023–11030 (2002).

    Article  CAS  Google Scholar 

  29. Y. Yin, R. M. Rioux, C. K. Erdonmez, S. Hughes, G. A. Somorjai, and A. P. Alivisatos, “Formation of Hollow Nanocrystals through the Nanoscale Kirkendall Effect,” Science 304, 711–714 (2004).

    Article  CAS  Google Scholar 

  30. A. Kovács and Y. Hirotsu, “Fabrication of L10-PdCoFe Nanocrystalline Particles with Tilted Magnetic Easy Axis,” Appl. Phys. Lett. 91, 193106 (2007).

    Article  CAS  Google Scholar 

  31. Y.L. Chueh, A.C. Ford, J.C. Ho, Z.A. Jacobson, Z. Fan, C.Y. Chen, L.J. Chou, and A. Javey, “Formation and Characterization of NixInAs/InAs Nanowire Heterostructures by Solid Source Reaction,” Nano Lett. 8, 4528–4533 (2008).

    Article  CAS  Google Scholar 

  32. R. Nakamura, G. Matsubayashi, H. Tsuchiya, S. Fujimoto, and H. Nakajima, “Formation of Oxide Nanotubes via Oxidation of Fe, Cu and Ni Nanowires and Their Structural Stability: Difference in Formation and Shrinkage Behavior of Interior Pores,” Acta Mater. 57, 5046–5052 (2009).

    Article  CAS  Google Scholar 

  33. E. M. Hunt, K. B. Pantier, and M. L. Pantoya, “Nano-Scale Reactants in the Self-Propagating High-Temperature Synthesis of Nickel Aluminide,” Acta Mater. 52, 3183–3191 (2004).

    Article  CAS  Google Scholar 

  34. S. O. Moussa and M. S. El-Shall, “Fabrication of Nanostructured Nickel and Titanium Aluminides Starting from Elemental Nanopowders,” Mater. Chem. Phys. 112, 1015–1020 (2008).

    Article  CAS  Google Scholar 

  35. J. Philibert, “Reactive Diffusion in Thin Films,” Appl. Surf. Sci. 53, 74–81 (1991).

    Article  CAS  Google Scholar 

  36. H. Mehrer, “Diffusion in Intermetallics,” Mater. Trans. Jpn. Inst. Metals 37, 1259–1280 (1996).

    CAS  Google Scholar 

  37. H. J. Fan, U. Gösele, and M. Zacharias, “Nanotubes and Hollow Nanoparticles Based on Kirkendall and Diffusion Process: A Review,” Small 3, 1660–1671 (2007).

    Article  CAS  Google Scholar 

  38. G. Shmitz, C.-B. Ene, and C. Nowak, Reactive Diffusion in Nanostructures of Spherical Symmetry,” Acta Mater. 57, 2673–2683 (2009).

    Article  CAS  Google Scholar 

  39. S. Yip, Handbook of Materials Modeling (Springer-Verlag, Dordrecht, 2005).

    Book  Google Scholar 

  40. S. Zhao, T. C. Germann, and A. Strachan, “Atomistic Simulations of Shock-Induced Alloying Reactions in Ni/Al Nanolaminates,” J. Chem. Phys. 125, 164707 (2006).

    Article  CAS  Google Scholar 

  41. S. Zhao, T. C. Germann, and A. Strachan, “Melting and Alloying of NiAl Nanolaminates Induced by Shock Loading: A Molecular Dynamics Simulation Study,” Phys. Rev. B: Condens. Matter Mater. Phys. 76, 104105 (2007).

    Article  CAS  Google Scholar 

  42. B. J. Henz, T. Hawa, and M. Zachariah, Molecular Dynamics Simulation of the Kinetic Sintering of Ni and Al Nanoparticles,” Mol. Simulat. 35, 804–811 (2009).

    Article  CAS  Google Scholar 

  43. B. J. Henz, T. Hawa, and M. Zachariah, “Molecular Dynamics Simulation of the Kinetic Reaction between Ni and Al Nanoparticles,” J. Appl. Phys. 105, 124310 (2009).

    Article  CAS  Google Scholar 

  44. A. V. Evteev, E. V. Levchenko, I. V. Belova, and G. E. Murch, “Interdiffusion and Surface-Sandwich Ordering in Initial Ni-Core-Pd-Shell Nanoparticle,” Phys. Chem. Chem. Phys. 11, 3233–3340 (2009).

    Article  CAS  Google Scholar 

  45. A. V. Evteev, E. V. Levchenko, D. P. Riley, I. V. Belova, and G. E. Murch, “Reaction of a Ni-Coated Al Nanoparticle to Form B2-NiAl: A Molecular Dynamics Study.” Phil. Mag. Lett. 89, 815–830 (2009).

    Article  CAS  Google Scholar 

  46. W. H. Qi and S. T. Lee, “Phase Stability, Melting and Alloy Formation of Au-Ag Bimetallic Nanoparticles,” J. Phys. Chem. C 114, 9580–9587 (2010).

    Article  CAS  Google Scholar 

  47. E. V. Levchenko, A. V. Evteev, D. P. Riley, I. V. Belova, and G. E. Murch, “Molecular Dynamics Simulation of the Alloying Reaction in Al-Coated Ni Nanoparticles,” Comput. Mater. Sci. 47, 712–720 (2009).

    Article  CAS  Google Scholar 

  48. N. H. Nguyen, A. Hu, J. Persic, and J. Z. Wen, “Molecular Dynamics Simulation of Energetic Aluminum/Palladium Core-Shell Nanoparticles,” Chem. Phys. Lett. 503, 112–117 (2011).

    Article  CAS  Google Scholar 

  49. A. V. Evteev, E. V. Levchenko, F. A. Hagel, I. V. Belova, and G. E. Murch, “Molecular Dynamics Study of Reaction Pathways in an Al-Coated Ni Nanoparticle,” Intermetallics 19, 934–941 (2011).

    Article  CAS  Google Scholar 

  50. F. Delogu, “Ignition of an Exothermal Reaction by Collision between Al and Ni Crystals,” J. Appl. Phys. 110, 103505 (2011).

    Article  CAS  Google Scholar 

  51. E. V. Levchenko, A. V. Evteev, G. G. Löwisch, I. V. Belova, and G. E. Murch, “Molecular Dynamics Simulation of Alloying in a Ti-Coated Al Nanoparticle,” Intermetallics 22, 193–202 (2012).

    Article  CAS  Google Scholar 

  52. J. Hafner, “Atomic-Scale Computational Materials Science,” Acta Mater. 48, 71–92 (2000).

    Article  CAS  Google Scholar 

  53. M. S. Daw and M. I. Baskes, “Embedded-Atom Method: Derivation and Application to Impurities, Surfaces, and Other Defects in Metals,” Phys. Rev. B: Condens. Matter Mater. Phys. 29, 6443–6453 (1984).

    Article  CAS  Google Scholar 

  54. E. V. Levchenko, A. V. Evteev, I. V. Belova and G. E. Murch, “Molecular Dynamics Study of Density, Surface Energy and Self-Diffusion in a Liquid Ni50Al50 Alloy,” Comput. Mater. Sci. 50, 331–337 (2010).

    Article  CAS  Google Scholar 

  55. E. V. Levchenko, A. V. Evteev, D. R. Beck, I. V. Belova, and G. E. Murch, “Molecular Dynamics Simulation of the Thermophysical Properties of an Under-Cooled Liquid NiAl Alloy,” Comput. Mater. Sci. 50, 465–473 (2010).

    Article  CAS  Google Scholar 

  56. E. V. Levchenko, A. V. Evteev, R. Kozubski, I. V. Belova, and G. E. Murch, “Molecular Dynamics Simulation of Surface Segregation in a (110) B2-NiAl Thin Film, Phys. Chem. Chem. Phys. 13, 1214–1221 (2011).

    Article  CAS  Google Scholar 

  57. A. V. Evteev, E. V. Levchenko, I. V. Belova, and G. E. Murch, “Molecular Dynamics Simulation of Diffusion in a (110) B2-NiAl Film,” Intermetallics 19, 848–854 (2011).

    Article  CAS  Google Scholar 

  58. A. V. Evteev, E. V. Levchenko, I. V. Belova and G. E. Murch, “Molecular Dynamics Assessment of the Time-Temperature-Transformation Diagram for Crystallization of an Undercooled Liquid Ni50Al50 Alloy, Acta Mater. 59, 6412–6419 (2011).

    Article  CAS  Google Scholar 

  59. L. Verlet, “Computer “Experiments” on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules,” Phys. Rev. 159, 98–203 (1967).

    Article  CAS  Google Scholar 

  60. Y. Mishin, Diffusion Processes in Advanced Technological Materials Ed. by D. Gupta (William Andrew Norwich, New York, 2005), p. 113.

    Chapter  Google Scholar 

  61. X. Xie and Y. Mishin, “Monte Carlo Simulation of Grain Boundary Segregation and Decohesion in NiAl.” Acta Mater. 50, 4303–4313 (2002).

    Article  CAS  Google Scholar 

  62. A. Kerrache, J. Horbach, and K. Binder, “Molecular-Dynamics Computer Simulation of Crystal Growth and Melting in Al50Ni50,” Europhys. Lett. 81, 58001 (2008).

    Article  CAS  Google Scholar 

  63. Y. Mishin, A. Y. Lozovoi, and A. Alavi, “Evaluation of Diffusion Mechanisms in NiAl by Embedded-Atom and First-Principles Calculations,” Phys. Rev. B: Condens. Matter Mater. Phys. 67, 014201 (2003).

    Google Scholar 

  64. M. I. Mendelev and Y. Mishin, “Molecular Dynamics Study of Self-Diffusion in BCC Fe,” Phys. Rev. B: Condens. Matter Mater. Phys. 80, 144111 (2009).

    Article  CAS  Google Scholar 

  65. G. J. Ackland and M. W. Finnis, “Semi-Empirical Calculation of Solid Surface Tensions in BCC Transition Metals,” Phil. Mag. A 54, 301–315 (1986).

    Article  CAS  Google Scholar 

  66. P. Gumbsch and M. S. Daw, “Interface Stresses and Their Effects on the Elastic Moduli of Metallic Multilayers,” Phys. Rev. B: Condens. Matter 44, 3934–3938 (1991).

    Article  Google Scholar 

  67. L. E. Murr, Interfacial Phenomena in Metals and Alloys (Addison-Wesley, Reading, MA, 1975).

    Google Scholar 

  68. St. Frank, S. V. Divinski, U. Södervall, and Chr. Herzig, “Ni Tracer Diffusion in the B2-Compound NiAl: Influence of Temperature and Composition,” Acta Mater. 49, 1399–1411 (2001).

    Article  CAS  Google Scholar 

  69. N. A. Stolwijk, M. van Gend and H. Bakker, “Self-Diffusion in the Intermetallic Compound CoGa,” Phil. Mag. A 42,783–808 (1980).

    Article  CAS  Google Scholar 

  70. E. W. Elcock and C. W. McCombie, “Vacancy Diffusion in Binary Ordered Alloys,” Phys. Rev. 109, 605–606 (1958).

    Article  CAS  Google Scholar 

  71. M. Arita, M. Koiwa and S. Ishioka, “Diffusion Mechanisms in Ordered Alloys-a Detailed Analysis of Six-Jump Vacancy Cycle in the B2 Type Lattice.” Acta Metall. 37, 1363–1374 (1989).

    Article  CAS  Google Scholar 

  72. H. Hahn, G. Frohberg and H. Wever, “Self Diffusion in the Intermetallic B2 Electron Compound PdIn,” Phys. Status Solidi A 79, 559–565 (1983).

    Article  CAS  Google Scholar 

  73. G. F. Hancock and B. R. McDonnel, “Diffusion in the Intermetallic Compound NiAl,” Phys. Status Solidi A 4, 143–150 (1971).

    Article  CAS  Google Scholar 

  74. K. A. Marino and E. A. Carter, “First-Principles Characterization of Ni Diffusion Kinetics in β-NiAl,” Phys. Rev. B: Condens. Matter Mater. Phys. 78, 184105 (2008).

    Article  CAS  Google Scholar 

  75. K. A. Marino and E. A. Carter, “The Effect of Platinum on Al Diffusion Kinetics in β-NiAl: Implications for Thermal Barrier Coating Lifetime,” Acta Mater. 58, 2726–2737 (2010).

    Article  CAS  Google Scholar 

  76. G. H. Vineyard, “Frequency Factors and Isotope Effects in Solid State Rate Processes,” J. Phys. Chem. Solids 3, 121–127 (1957).

    Article  CAS  Google Scholar 

  77. Q. Xu and A. van der Ven, “Atomic Transport in Ordered Compounds Mediated by Local Disorder: Diffusion in B2-NixAl1 − x ,” Phys. Rev. B: Condens. Matter Mater. Phys. 81, 064303 (2010).

    Article  CAS  Google Scholar 

  78. M. I. Mendelev and Y. Mishin, “Molecular Dynamics Study of Self-Diffusion in BCC Fe,” Phys. Rev. B: Condens. Matter Mater. Phys. 80, 144111 (2009).

    Article  CAS  Google Scholar 

  79. M. I. Mendelev and B. S. Bokstein, “Molecular Dynamics Study of Self-Diffusion in Zr,” Phil. Mag. B 90, 637–654 (2010).

    Article  CAS  Google Scholar 

  80. H. Mehrer, Diffusion in Solids (Springer-Verlag, Berlin, 2007).

    Google Scholar 

  81. R. Drautz and M. Fähnle, “The Six-Jump Diffusion Cycles in B2 Compounds Revisited,” Acta Mater. 47, 2437–2447 (1999).

    Article  CAS  Google Scholar 

  82. I. V. Belova and G. E. Murch, “A Theory of Tracer Diffusion in Nonstoichiometric Intermetallic Compounds, Phil. Mag. A 82, 269–283 (2002).

    Article  CAS  Google Scholar 

  83. Proceedings of the Int. Symp. on Nickel and Iron Aluminides: Processing, Properties, and Applications, Ed. by S. C. Deevi, P. J. Maziasz, V. K. Sikka, and R. W. Cahn, (ASM International, Metals Park, OH, 1997).

    Google Scholar 

  84. S. C. Deevi, D. G. Morris, and V. K. Sikka, “Preface,” Mater. Sci. Eng. A 258, xi (1998).

    Article  Google Scholar 

  85. S. Stüber, D. Holland-Moritz, T. Unruh, and A. Meyer, “Ni Self-Diffusion in Refractory Al-Ni Melts,” Phys. Rev. B: Condens. Matter Mater. Phys. 81, 024204 (2010).

    Article  CAS  Google Scholar 

  86. D. M. Herlach, R. Lengsdorf, P. Galenko, H. Hartmann, C.-A. Gandin, S. Mosbah, A. Garcia-Escorial, and H. Henein, “Non-Equilibrium and Near-Equilibrium Solidification of Undercooled Melts of Ni- and Al-Based Alloys,” Adv. Eng. Mater. 10, 444–452 (2008).

    Article  CAS  Google Scholar 

  87. I. Egry and J. Brillo, “Surface Tension and Density of Liquid Metallic Alloys Measured by Electromagnetic Levitation,” J. Chem. Eng. Data 54, 2347–2352 (2009).

    Article  CAS  Google Scholar 

  88. J. W. Cahn, in Interface Segregation, Ed. by W. C. Johnson and J. M. Blackely (American Society for Metals, Metals Park, OH, 1979), Ch. 1, p. 3.

    Google Scholar 

  89. T. Frolov and Y. Mishin, “Temperature Dependence of the Surface Free Energy and Surface Stress: An Atomistic Calculation for Cu(110).” Phys. Rev. B: Condens. Matter Mater. Phys. 79, 045430 (2009).

    Google Scholar 

  90. S. Reutzel, H. Hartmann, P. K. Galenko, S. Schneider, and D. M. Herlach, “Change of the Kinetics of Solidification and Microstructure Formation Induced by Convection in the Ni-Al System,” Appl. Phys. Lett. 91, 041913 (2007).

    Article  CAS  Google Scholar 

  91. Y. Plevachuk, I. Egry, J. Brillo, D. Holland-Moritz, and I. Kaban, “Density and Atomic Volume in Liquid Al-Fe and Al-Ni Binary Alloys,” Int. J. Mater. Res. 98, 107–111 (2007).

    CAS  Google Scholar 

  92. I. Egry, J. Brillo, D. Holland-Moritz, and Y. Plevachuk, “The Surface Tension of Liquid Aluminum-Based Alloys,” Mater. Sci. Eng. A 495, 14–18 (2008).

    Article  CAS  Google Scholar 

  93. S. K. Das, J. Horbach, and T. Voigtmann, “Structural Relaxation in a Binary Metallic Melt: Molecular Dynamics Computer Simulation of Undercooled Al80Ni20,” Phys. Rev. B: Condens. Matter Mater. Phys. 78, 064208 (2008).

    Article  CAS  Google Scholar 

  94. S. Gialanella and L. Lutterotti, Nanocrystalline Metallic Materials, Nanoclusters and Nanocrystals, Ed. by H. S. Nalwa (American Scientific Publisher, California, 2003), p. 1.

    Google Scholar 

  95. Y. Q. Cheng and E. Ma, “Atomic-Level Structure and Structure-Property Relationship in Metallic Glasses,” Progr. Mater. Sci. 56, 379–473 (2011).

    Article  CAS  Google Scholar 

  96. J. Noro, A. S. Ramos, and M. T. Vieira, Intermetallic Phase Formation in Nanometric Ni/Al Multilayer Thin Films,” Intermetallics 16, 1061–1065 (2008).

    Article  CAS  Google Scholar 

  97. G. Voronoi, “Recherches sur les paralléloèdres Primitives,” J. Reine Angew. Math. 134, 198–287 (1908).

    Google Scholar 

  98. B. J. Gellatly and J. L. Finney, “Characterisation of Models of Multicomponent Amorphous Metals: The Radical Alternative to the Voronoi Polyhedron,” J. Non-Cryst. Solids 50, 313–329 (1982).

    Article  CAS  Google Scholar 

  99. M. Barth, B. Wei, and D. M. Herlach, “Crystal Growth in Undercooled Melts of the Intermetallic Compounds FeSi and CoSi,” Phys. Rev. B: Condens. Matter 51, 3422–3428 (1995).

    Article  CAS  Google Scholar 

  100. K. Biswas G. Phanikumar, D. Holland-Moritz, D. M. Herlach, and K. Chattopadhyay, “Disorder Trapping and Grain Refinement during Solidification of Undercooled Fe-18 at % Ge Melts,” Phil. Mag. 87, 3817–3837 (2007).

    Article  CAS  Google Scholar 

  101. H. Reichert, O. Klein, H. Dosch, M. Denk, V. Honkimaki, T. Lippmann, and G. Reiter, “Observation of Five-Fold Local Symmetry in Liquid Lead,” Nature 408, 839–841 (2000).

    Article  CAS  Google Scholar 

  102. T. Schenk, D. Holland-Moritz, V. Simonet, R. Bellissent, and D. M. Herlach, “Icosahedral Short-Range Order in Deeply Undercooled Metallic Melts,” Phys. Rev. Lett. 89, 075507 (2002).

    Article  CAS  Google Scholar 

  103. D. Holland-Moritz, T. Schenk, R. Bellissent, V. Simonet, K. Funakoshi, J. M. Merino, T. Buslaps, and S. Reutzel, “Short-Range Order in Undercooled Co Melts,” J. Non-Cryst. Solids 312–314, 47–51 (2002).

    Article  Google Scholar 

  104. A. Di Cicco, A. Trapananti, S. Faggioni, and A. Filipponi, “Is There Icosahedral Ordering in Liquid and Undercooled Metals?” Phys. Rev. Lett. 91, 135505 (2003).

    Article  CAS  Google Scholar 

  105. N. Jakse and A. Pasturel, “Local Order of Liquid and Supercooled Zirconium by Ab Initio Molecular Dynamics,” Phys. Rev. Lett. 91, 195501 (2003).

    Article  CAS  Google Scholar 

  106. A. V. Evteev, A. T. Kosilov, and E. V. Levchenko, “Atomic Mechanisms of Pure Iron Vitrification,” J. Exp. Theor. Phys. 99, 522–529 (2004).

    Article  CAS  Google Scholar 

  107. N. Jakse and A. Pasturel, “Ab Initio Molecular Dynamics Simulations of Local Structure of Supercooled Ni,” J. Chem. Phys. 120, 6124–6127 (2004).

    Article  CAS  Google Scholar 

  108. P. Ganesh and M. Widom, “Signature of Nearly Icosahedral Structures in Liquid and Supercooled Liquid Copper,” Phys. Rev. B: Condens. Matter Mater. Phys. 74, 134205 (2006).

    Article  CAS  Google Scholar 

  109. M. Celino, V. Rosato, A. Di Cicco, A. Trapananti, and C. Massobrio, “Role of Defective Icosahedra in Undercooled Copper.” Phys. Rev. B: Condens. Matter Mater. Phys. 75, 174210 (2007).

    Article  CAS  Google Scholar 

  110. P. Ganesh and M. Widom, “Ab Initio Simulations of Geometrical Frustration in Supercooled Liquid Fe and Fe-Based Metallic Glass,” Phys. Rev. B: Condens. Matter Mater. Phys. 77, 014205 (2008).

    Google Scholar 

  111. H. Senapati, R. K. Kadiyala, and C. A. Angell, “Single- and Two-Step Calorimetric Studies of Crystallization Kinetics in Simple Ionic Glass-Forming Lliquids. 1. Ca(NO3)2-KNO3 System,” J. Phys. Chem. 95, 7050–7054 (1991).

    Article  CAS  Google Scholar 

  112. S. Mukherjee, J. Schroers, W. L. Johnson, and W. K. Rhim, “Influence of Kinetic and Thermodynamic Factors on the Glass-Forming Ability of Zirconium-Based Bulk Amorphous Alloys,” Phys. Rev. Lett. 94, 245501 (2005).

    Article  CAS  Google Scholar 

  113. R. Busch, J. Schroers, and W. H. Wang, “Thermodynamics and Kinetics of Bulk Metallic Glass,” MRS Bull. 32, 620–623 (2007).

    Article  CAS  Google Scholar 

  114. A. V. Evteev, A. T. Kosilov, E. V. Levchenko, and O. B. Logachev, “The Influence of the Icosahedral Percolation Transition in Supercooled Liquid Iron on the Diffusion Mobility of Atoms,” J. Exp. Theor. Phys. 101, 521–527 (2005).

    Article  CAS  Google Scholar 

  115. A. V. Evteev, A. T. Kosilov, E. V. Levchenko, and O. B. Logachev, “Kinetics of Isothermal Nucleation in a Supercooled Iron Melt,” Phys. Solid State 48, 815–820 (2006).

    Article  CAS  Google Scholar 

  116. Y. Zhang, L. Wang, W. Wang, “Thermodynamic, Dynamic, and Structural Relaxation in Supercooled Liquid and Glassy Ni below the Critical Temperature,” J. Phys.: Condens. Matter. 19, 196106 (2007).

    Article  CAS  Google Scholar 

  117. T. Mizuguchi and T. Odagaki, “Vitrification of a Monatomic 2D Simple Liquid,” Cent. Eur. J. Phys. 7, 479–482 (2009).

    Article  CAS  Google Scholar 

  118. T. Mizuguchi and T. Odagaki, “Glass Formation and Crystallization of a Simple Monoatomic Liquid,” Phys. Rev. E: Stat. Nonlin. Soft Matter Phys. 79, 051501 (2009).

    Article  CAS  Google Scholar 

  119. S.-H. Lee, J.-H. Lee, Y.-H. Lee, D. H. Shin, and Y. S. Kim, “Effect of Heating Rate on the Combustion Synthesis of Intermetallics,” Mater. Sci. Eng. A 281, 275–285 (2000).

    Article  Google Scholar 

  120. K. Morsi, “Review: Reaction Synthesis Processing of Ni-Al Intermetallic Materials,” Mater. Sci. Eng. A 299, 1–15 (2001).

    Article  Google Scholar 

  121. E. K. Y. Fu, R. D. Rawlings, and H. B. McShane, “Reaction Synthesis of Titanium Aluminides,” J. Mater. Sci. 36, 5537–5542 (2001).

    Article  CAS  Google Scholar 

  122. N. Bertolino, M. Monagheddu, A. Tacca, P. Giuliani, C. Zanotti, and U. A. Tamburini, “Ignition Mechanism in Combustion Synthesis of Ti-Al and Ti-Ni Systems,” Intermetallics 11, 41–49 (2003).

    Article  CAS  Google Scholar 

  123. M. Adeli, S. H. Seyedein, M. R. Aboutalebi, M. Kobashi, and N. Kanetake, “A Study on the Combustion Synthesis of Titanium Aluminide in the Self-Propagating Mode,” J. Alloys Compd. 497, 100–104 (2010).

    Article  CAS  Google Scholar 

  124. L. Farber, L. Klinger, and I. Gotman, “Modeling of Reactive Synthesis in Consolidated Blends of Fine Ni and Al Powders,” Mater. Sci. Eng. A 254, 155–165 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Belova.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evteev, A.V., Levchenko, E.V., Belova, I.V. et al. Molecular dynamics simulation of surface segregation, diffusion and reaction phenomena in equiatomic Ni-Al systems. Phys. Metals Metallogr. 113, 1202–1243 (2012). https://doi.org/10.1134/S0031918X12130017

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X12130017

Keywords

Navigation