Skip to main content
Log in

Effect of spherically converging shock waves on deformation and phase behavior of high-purity iron

  • Strength and Plasticity
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Optical metallography, transmission electron microscopy, and microhardness measurements were used to perform a layer-by-layer study of the structure of a high-purity iron sphere 166 mm in diameter after loading by converging spherical shock waves. It has been found that the plastic deformation of ɛ iron under this loading proceeds by slip; in the middle and deep layers, it proceeds via the formation of localized deformation bands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. S. Minshall, “Investigation of Polymorphic Transition in Iron at 130 Kbar,” Phys. Rev. 98, 271 (1955).

    CAS  Google Scholar 

  2. E. L. Peterson and F. S. Minshall, “Polymorphism of Iron at High Pressure,” J. Appl. Phys. 27, 291–298 (1956).

    Article  Google Scholar 

  3. T. Takahashi and W. A. Basset, “High Pressure Polymorphism of Iron,” Science 145, 483–486 (1964).

    Article  CAS  Google Scholar 

  4. L. M. Barker and R. E. Hollenbach, “Shock Wave Study of the α → ɛ Phase Transition in Iron,” J. Appl. Phys. 45, 4872–4887 (1974).

    Article  CAS  Google Scholar 

  5. E. A. Kozlov, “Shock Adiabate Features, Phase Transition Macrokinetics, and Spall Fracture of Iron in Different Phase States,” High Pressure Res. 10, 541–582 (1992).

    Article  Google Scholar 

  6. W. Arnold, Dynamisches Werkstoffverhalten von Armco-Eisen bei Stoßswellenbelastung (VDI-Verlag, Dusseldorf, 1992).

    Google Scholar 

  7. J. C. Boettger and D. C. Wallace, “Metastability and Dynamics of the Shock-Induced Phase Transition in Iron,” Phys. Rev. B: Condens. Matter 55, 2840–2849 (1997).

    Article  CAS  Google Scholar 

  8. D. H. Kalantar, J. F. Belak, G. W. Collins, J. D. Colvin, H. M. Davies, J. H. Eggert, T. C. Germann, J. Hawreliak, B. L. Holian, K. Kadau, P. S. Lomdahl, H. E. Lorenzana, M. A. Meyers, K. Rosolankova, M. S. Schneider, J. Sheppard, J. S. Stolken, and J. S. Wark, “Direct Observation of the α-ɛ Transition in Shock-Compressed Iron via Nanosecond X-ray Diffraction,” Phys. Rev. Lett. 95, 075502 (2005).

    Article  CAS  Google Scholar 

  9. F. Buy, Ch. Voltz, O. Heuze, and M. Missonnier, “Role of the α-ɛ Transition on the Damage Patterns of Iron,” J. Phys. IV France 134, 263–268 (2006).

    Article  CAS  Google Scholar 

  10. E. A. Kozlov, I. V. Telichko, D. M. Gorbachev, D. G. Pankratov, A. V. Dobromyslov, and N. I. Taluts, “On the Metastability and Incompleteness of the α-ɛ Phase Transformation in Unalloyed Iron under the Effect of Threshold Loading Pulses: Specific Features of the Deformation Behavior and Structure of Armco Iron,” Phys. Met. Metallogr. 99, 300–313 (2005).

    Google Scholar 

  11. A. V. Dobromyslov, E. A. Kozlov, B. V. Litvinov, and N. I. Taluts, “High-Rate Deformation of Armco Iron under Loading by Spherical Converging Shock Waves,” Dokl. Phys. 52, 418–421 (2007).

    Article  CAS  Google Scholar 

  12. A. V. Dobromyslov, E. A. Kozlov, and N. I. Taluts, “High-Strain-Rate Deformation of Armco Iron Induced by Spherical and Quasi-Spherical Converging Shock Waves and the Mechanism of the α → ɛ Transformation,” Phys. Met. Metallogr. 106, 531–535 (2008).

    Article  Google Scholar 

  13. E. A. Kozlov and A. V. Zhukov, “Phase Transitions in Spherical Stress Waves,” in High Pressure Science and Technology, Ed. by S. C. Schmidt, J. W. Shaner, G. A. Samana, and M. Ross, (American Institute of Physics, New York, 1994), pp. 977–980.

    Google Scholar 

  14. G. V. Kovalenko, E. A. Kozlov, and A. V. Petrovtsev, “Phenomenon of Spherical Converging Shock Wave Cumulation in Metals. Effect of Elastic and Plastic Properties, Phase Transformations and Fracture. Peculiarities of Numerical Simulation,” Proceedings of the 8th Int. Conf. “Khariton Readings on Problems of High Density Energy Physics” (RFNC-VNIIEF, Sarov, 2006), pp. 129–136.

    Google Scholar 

  15. S. A. Brichikov, V. V. Dremov, G. V. Kovalenko, E. A. Kozlov, A. V. Petrovtsev, D. A. Varfolomeev, A. M. Bragov, A. K. Lomunov, A. V. Dobromyslov, N. I. Taluts, A. Juanicotena, M. Gatulle, and C. Voltz, “Phase Transitions, High-Rate Straining, and Fracture of Iron under Spherical Explosive Loading,” in Shock Compression of Condensed Matter, Ed. by M. Elert, M. D. Furnish, R. Chau, N. Holmes, and J. Nguyen, (American Institute of Physics, 2007), pp. 251–254.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Kozlov.

Additional information

Original Russian Text © E.A. Kozlov, A.V. Dobromyslov, N.I. Taluts, Ch. Voltz, 2012, published in Fizika Metallov i Metallovedenie, 2012, Vol. 113, No. 10, pp. 1061–1070.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozlov, E.A., Dobromyslov, A.V., Taluts, N.I. et al. Effect of spherically converging shock waves on deformation and phase behavior of high-purity iron. Phys. Metals Metallogr. 113, 1007–1015 (2012). https://doi.org/10.1134/S0031918X12100055

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X12100055

Keywords

Navigation