Skip to main content
Log in

High-strength magnetically hard Fe-Cr-Co-Based alloys with reduced content of chromium and cobalt

  • Electrical and Magnetic Properties
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Structure and magnetic and mechanical properties of precipitation-hardening Fe-Cr-Co-W-Ga alloys with reduced Cr and Co contents have been studied. The compositions studied go beyond the limits of the miscibility gap in the phase diagram for conventional Fe-Cr-Co alloys. It has been established that after cold plastic deformation and low-temperature annealing the alloys are characterized by high values of mechanical and magnetic characteristics, which are significantly higher than those of known analogs. It is demonstrated that the treatment suggested leads to the decomposition of homogeneous solid solution based on α-Fe with the precipitation of disperse particles of a tungsten-rich phase, which promotes strengthening of alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Zwyssig, J. W. Kolar, and S. D. Round, “Megaspeed Drive Systems: Pushing Beyond 1 Million R/min,” IEEE/ASME Trans. Mechatronics 14, 564–574 (2009).

    Article  Google Scholar 

  2. D. K. Hong, B. C. Woo, and D. H. Koo, “Rotordynamics of 120000 r/min 15kW Ultra High Speed Motor,” IEEE Trans. Magn. 45, 2831–2834 (2009).

    Article  CAS  Google Scholar 

  3. J. Xing, F. Wang, T. Wang, and Y. Zhang, “Study of Anti-Demagnetization of Magnet for High Speed Permanent Magnet Machine,” IEEE Trans. Appl. Supercond. 20, 856–860 (2010).

    Article  Google Scholar 

  4. S. M. Jang, H. W. Cho, and S. K. Choi, “Design and Analysis of a High-Speed Brushless DC Motor for Centrifugal Compressor,” IEEE Trans. Magn. 43, 2573–2575 (2007).

    Article  Google Scholar 

  5. M. Sadeghierad, A. Darabi, H. Lesani, and H. Monsef, “Rotor Yoke Thickness of Coreless High-Speed Axial-Flux Permanent Magnet Generator,” IEEE Trans. Magn. 45, 2032–2037 (2009).

    Article  CAS  Google Scholar 

  6. A. Goldman, Handbook of Modern Ferromagnetic Materials, Second Ed. (Kluwer Academic, Norwell, Mass, 2002).

    Google Scholar 

  7. Z. Kolondzovski, P. Sallinen, A. Belahcen, and A. Arkkio, “Rotordynamic Analysis for High-Speed Permanent-Magnet Electrical Machines,” IET Electr. Power Appl. 4, 516–524 (2010).

    Article  Google Scholar 

  8. I. Tanaka and H. Yashiki, “Magnetic and Mechanical Properties of Newly Developed High-Strength Nonoriented Electrical Steel,” IEEE Trans. Magn. 46, 290–293 (2010).

    Article  CAS  Google Scholar 

  9. M. G. Garrell, B. M. Ma, A. J. Shih, E. Lara-Kurzio, and R. O. Scattergood, “Mechanical Properties of Polyphenylene-Sulfide (PPS) Bonded Nd-Fe-B Magnets,” Mater. Sci. Eng., A 359, 375–383 (2003).

    Article  Google Scholar 

  10. M. Yue, A. Cao, G. Wang, W. Liu, and J. Zxang, “Mechanical Properties of Spark Plasma Sintering Nd-Fe-B Permanent Magnets,” Phys. Status Solidi A 204, 4149–4152 (2007).

    Article  CAS  Google Scholar 

  11. T. Kubota, G. Wakui, and M. Itagaki, “Hysteresis Motor Using Magnetically Anisotropic Fe-Cr-Co Magnet,” IEEE Trans. Magn. 34, 3888–3896 (1998).

    Article  CAS  Google Scholar 

  12. M. Jagiela, J. Bumby, and E. Spooner, “Time-Domain and Frequency-Domain Finite Element Models of a Solid-Rotor Induction/Hysteresis Motor,” IET Electr. Power Appl. 4, 185–187 (2010).

    Article  Google Scholar 

  13. http://www.arnoldmagnetics.com

  14. M. Homma, K. Nakamura, M. Okada, and G. Thomas, “Phase Diagram of Fe-Cr-Co Permanent Magnet System,” IEEE Trans. Magn. 12, 1325–1327 (1977).

    Google Scholar 

  15. L. X. Lu, L. Zhen, C. Y. Xu, and X. Y. Sun, “Phase Field Simulation of Microstructure Evolution in Fe-Cr-Co Alloy during Thermal Magnetic Treatment and Step Aging,” J. Magn. Magn. Mater. 322, 987–995 (2010).

    Article  Google Scholar 

  16. G. F. Korznikova and A. V. Korznikov, “Gradient Submicrocrystalline Structure in Fe-Cr-Co System Hard Magnetic Alloy,” Mater. Sci. Eng., A 503, 99–102 (2009).

    Article  Google Scholar 

  17. E. V. Belozerov, M. A. Uimin, and A. E. Ermakov, “High-Strength Magnetically Hard Fe-Cr-Co-Based Alloys,” Zh. Funkts. Mater. 1, 36–40 (2007).

    Google Scholar 

  18. E. V. Belozerov, M. A. Uimin, A. E. Ermakov, V. V. Serikov, N. M. Kleinerman, and G. V. Ivanova, “Effect of Tungsten and Gallium on the Structure and Magnetic and Mechanical Properties of Fe-Cr-Co Alloys,” Phys. Met. Metallogr. 106, 472–480 (2008).

    Article  Google Scholar 

  19. E. V. Belozerov, N. N. Shchegoleva, G. V. Ivanova, and N. V. Mushnikov, “Features of the Post-Deformation Hardening of Fe-Cr-Co Hard Magnetic Alloys with W and Ga Additives,” Solid State Phenom. 152–153, 54–57 (2009).

    Article  Google Scholar 

  20. G. V. Ivanova, N. N. Shchegoleva, V. V. Serikov, N. M. Kleinerman, E. V. Belozerov, M. A. Uimin, V. S. Gaviko, and N. V. Mushnikov, “Structural Transformations in High-Strength Magnetically Hard Fe-Cr-Co-W-Ga Alloys,” Phys. Met. Metallogr. 109, 438–446 (2010).

    Article  Google Scholar 

  21. N. M. Kleinerman, E. V. Belozerov, N. V. Mushnikov, and V. V. Serikov, “Mössbauer Study of Structure Changes in Fe-Co-Cr Alloys upon Their Alloying with W and Ga,” J. Phys.: Conf. Series 217, 012129 (2010).

    Article  Google Scholar 

  22. V. S. Rusakov, Messbauerovskaya spektroskopiya lokal’no neodnorodnykh sistem (Mössbauer Spectroscopy of Locally Heterogeneous Systems) (Almaty, Inst. Nuclear Physics, NNC, Rep. Kazakhstan, 2000) [in Russian].

    Google Scholar 

  23. G. V. Ivanova, N. N. Shchegoleva, V. V. Serikov, N. M. Kleinerman, and E. V. Belozerov, “Structure of a W-Enriched Phase in Fe-Co-Cr-W-Ga Alloys,” J. Alloys Compd. 509, 1813–1818 (2011).

    Article  Google Scholar 

  24. S. Alleg, B. Bouzabata, and J. M. Greneche, “Study of the Local Environment during the Phase Decomposition of Fe-30.8Cr-12.2Co Alloy by Mössbauer Spectrometry,” J. Alloys Compd. 312, 265–272 (2000).

    Article  CAS  Google Scholar 

  25. A. A. Novakova, T. Yu. Kiseleva, V. V. Lyovina, D. V. Kuznetsov, and A. D. Dzidzigur, “Low Temperature Formation of Nanocrystalline Fe-W and Fe-Mo Compounds,” J. Alloys Compd. 317-318, 423–427 (2001).

    Article  Google Scholar 

  26. J. D. Livingston, “A Review of Coercivity Mechanisms,” J. Appl. Phys. 52, 2544–2548 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © E.V. Belozerov, N.V. Mushnikov, G.V. Ivanova, N.N. Shchegoleva, V.V. Serikov, N.M. Kleinerman, A.V. Vershinin, M.A. Uimin, 2012, published in Fizika Metallov i Metallovedenie, 2012, Vol. 113, No. 4, pp. 339–346.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belozerov, E.V., Mushnikov, N.V., Ivanova, G.V. et al. High-strength magnetically hard Fe-Cr-Co-Based alloys with reduced content of chromium and cobalt. Phys. Metals Metallogr. 113, 319–325 (2012). https://doi.org/10.1134/S0031918X12040023

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X12040023

Keywords

Navigation