Advertisement

The Physics of Metals and Metallography

, Volume 112, Issue 7, pp 633–665 | Cite as

Magnetocaloric effect in Ni-Mn-X (X = Ga, In, Sn, Sb) Heusler alloys

  • V. D. Buchelnikov
  • V. V. Sokolovskiy
Article

Abstract

A review is given of experimental and theoretical works concerning the investigation of magnetic and structural phase transitions and of the magnetocaloric effect in Ni-Mn-X (X = Ga, In, Sn, Sb) Heusler alloys possessing unique properties, such as the existence of coupled magnetostructural and metamagneto-structural phase transitions, giant magnetocaloric effect, shape-memory effect in the ferromagnetic state, giant magnetodeformation and magnetoresistance, exchange anisotropy. A conclusion is made that the Heusler alloys, because of their unique properties, are promising for the application in various engineering devices, including technology of magnetic refrigeration.

Keywords

Matter Mater Magnetocaloric Effect Heusler Alloy Magnetic Refrigeration Magnetocaloric Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. V. Vonsovskii, Magnetism (Nauka, Moscow, 1971; Wiley, New York, 1974).Google Scholar
  2. 2.
    A. S. Andreenko, K. P. Belov, S. A. Nikitin, and A. M. Tishin, “Magnetocaloric Effects in Rare-Earth Magnetic Materials,” Sov. Phys.—Usp. 32, 649–664 (1989).CrossRefGoogle Scholar
  3. 3.
    A. M. Tishin and Y. I. Spichkin, The Magnetocaloric Effect and Its Applications (IOP, Bristol, 2003).CrossRefGoogle Scholar
  4. 4.
    K. A. Gschneidner Jr, V. K. Pecharsky, and A. O. Tsokol, “Recent Developments in Magnetocaloric Materials,” Rep. Prog. Phys. 68, 1479–1539 (2005).CrossRefGoogle Scholar
  5. 5.
    E. Warburg, “Magnetische Untersuchungen über einige Wirkungen der Coerzitivkraft,” Ann. Phys. 13, 141–164 (1881).CrossRefGoogle Scholar
  6. 6.
    P. Debye, “Einige Bemerkungen zur Magnetisierung bei tiefer Temperatur,” Ann. Phys. 81, 1154–1160 (1926).CrossRefGoogle Scholar
  7. 7.
    W. F. Giauque, “A Thermodynamic Treatment of Certain Magnetic Effects. A Proposed Method of Producing Temperatures Considerably below 1ℴ Absolute,” J. Am. Chem. Soc. 49, 1864–1870 (1927).CrossRefGoogle Scholar
  8. 8.
    W. F. Giauque and D. P. MacDougall, “Attainment of Temperatures below 1 Absolute by Demagnetization of Gd2(SO4)3 · 8H2O,” Phys. Rev. 43, 768 (1933).CrossRefGoogle Scholar
  9. 9.
    W. J. de Haas, J. V. D. Handel, and C. J. Gorter, “Paramagnetic Saturation in a Single Crystal,” Phys. Rev. 43, 81 (1933).CrossRefGoogle Scholar
  10. 10.
    N. Kurti and F. Simon, “Experiments at Very Low Temperatures Obtained by the Magnetic Method. I. The Production of the Low Temperatures,” Proc. Roy. Soc. Lond. A. 149, 152–176 (1935).CrossRefGoogle Scholar
  11. 11.
    V. K. Pecharsky and K. A. Gschneidner, Jr, “Magnetocaloric Effect and Magnetic Refrigeration,” J. Magn. Magn. Mater. 200, 44–56 (1999).CrossRefGoogle Scholar
  12. 12.
    K. A. Gschneidner, Jr. and V. K. Pecharsky, “Magnetocaloric Materials,” Annu. Rev. Mater. Sci. 30, 387–429 (2000).CrossRefGoogle Scholar
  13. 13.
    O. Tegus, E. Bruck, L. Zhang, Dagula, K. H. J. Buschow, and F. R. de Boer, “Magnetic-Phase Transitions and Magnetocaloric Effects,” Physica B. 319, 174–192 (2002).CrossRefGoogle Scholar
  14. 14.
    E. Bruck, “Developments in Magnetocaloric Refrigeration,” J. Phys. D: Appl. Phys. 38, R381–R391 (2005).CrossRefGoogle Scholar
  15. 15.
    E. Bruck, O. Tegus, D. T. Cam Thanh, T. Trung Nguyen, and K. H. J. Buschow, “A Review on Mn Based Materials for Magnetic Refrigeration: Structure and Properties,” Int. J. Refrig. 31, 763–770 (2008).CrossRefGoogle Scholar
  16. 16.
    Phan Manh-Huong and Yu Seong-Cho, “Review of the Magnetocaloric Effect in Manganite Materials,” J. Magn. Magn. Mater. 308, 325–340 (2007).CrossRefGoogle Scholar
  17. 17.
    K. A. Gschneidner, Jr. and V. K. Pecharsky, “Thirty Years of Near Room Temperature Magnetic Cooling: Where We Are Today and Future Prospects,” Int. J. Refrig. 31, 945–961 (2008).CrossRefGoogle Scholar
  18. 18.
    K. A. Gschneidner, Jr., “The Magnetocaloric Effect, Magnetic Refrigeration and Ductile Intermetallic Compounds,” Acta Mater. 57, 18–28 (2009).CrossRefGoogle Scholar
  19. 19.
    A. Planes, L. Manosa, and M. Acet, “Magnetocaloric Effect and Its Relation to Shape-Memory Properties in Ferromagnetic Heusler Alloys,” J. Phys.: Condens. Matter. 21, 233201 (2009).CrossRefGoogle Scholar
  20. 20.
    F. Hu, B. Shen, and J. Sun, “Magnetic Entropy Change in Ni51.5Mn22.7Ga25.8 Alloy,” Appl. Phys. Lett. 76, 3460–3462 (2000).CrossRefGoogle Scholar
  21. 21.
    J. Marcos, L. Manosa, A. Planes, et al., “Magnetic Field Induced Entropy Change and Magnetoelasticity in Ni-Mn-Ga Alloys,” Phys. Rev. B: Condens. Matter. Mater. Phys. 66, 224413 (2002).CrossRefGoogle Scholar
  22. 22.
    M. Pasquale, C. P. Sasso, and L. H. Lewis, “Magnetic Entropy in Ni2MnGa Single Crystals,” J. Appl. Phys. 95, 6918 (2004).CrossRefGoogle Scholar
  23. 23.
    F. Albertini, F. Canepa, S. Cirafici, et al., “Composition Dependence of Magnetic and Magnetothermal Properties of Ni-Mn-Ga Shape Memory Alloys,” J. Magn. Magn. Mater. 272–276, 2111–2112. (2004).CrossRefGoogle Scholar
  24. 24.
    A. A. Cherechukin, T. Takagi, M. Matsumoto, and V. D. Buchel’nikov, “Magnetocaloric Effect in Ni(2 + x)Mn(1 − x)Ga Heusler Alloys,” Phys. Lett. A. 326, 146–151 (2004).CrossRefGoogle Scholar
  25. 25.
    A. Aliev, A. Batdalov, S. Bosko, et al., “Magnetocaloric Effect and Magnetization in Ni-Mn-Ga Heusler Alloy in the Vicinity of Magnetostructural Transition,” J. Magn. Magn. Mater. 272–276, 2040–2043 (2004).CrossRefGoogle Scholar
  26. 26.
    V. V. Khovailo, K. Oikawa, T. Abe, et al., “Entropy Change at the Martensitic Transformation in Ferromagnetic Shape Memory Alloys Ni(2 + x)Mn(1 − x)Ga,” J. Appl. Phys. 93, 8483 (2003).CrossRefGoogle Scholar
  27. 27.
    V. Khovaylo, V. Koledov, V. Shavrov, et al., “Compositional Dependence of Magnetic Entropy Change in Ni(2 + x)Mn(1 − x)Ga with Coupled Magnetostructural Phase Transition,” Proc. Second IIF-IIR Int. Conf. Magnetic Refrigeration at Room Temperature (Portoroz, Slovenia, 2007), pp. 217–223.Google Scholar
  28. 28.
    V. V. Khovaylo, V. D. Buchelnikov, R. Kainuma, et al., “Phase Transitions in Ni(2 + x)Mn(1 − x)Ga with Ni Excess,” Phys. Rev. B: Condens. Matter Mater. Phys. 72, 224408 (2005).CrossRefGoogle Scholar
  29. 29.
    T. Krenke, E. Duman, M. Acet, et al., “Inverse Magnetocaloric Effect in Ferromagnetic Ni-Mn-Sn Alloys,” Nature Mater. 4, 450–454 (2005).CrossRefGoogle Scholar
  30. 30.
    A. K. Pathak, M. Khan, I. Dubenko, et al., “Large Magnetic Entropy Change in Ni50Mn(50 − x)Inx Heusler Alloys,” Appl. Phys. Lett. 90, 262504 (2007).CrossRefGoogle Scholar
  31. 31.
    Z. D. Han, D. H. Wang, C. L. Zhang, et al., “Low-Field Inverse Magnetocaloric Effect in Ni(50−x)Mn(39+x)Sn11 Heusler Alloys,” Appl. Phys. Lett. 90, 042507 (2007).CrossRefGoogle Scholar
  32. 32.
    M. Khan, N. Ali, and S. Stadler, “Inverse Magnetocaloric Effect in Ferromagnetic Ni50Mn(37 + x)Sb(13 − x) Heusler Alloys,” J. Appl. Phys. 101, 053919 (2007).CrossRefGoogle Scholar
  33. 33.
    X. Moya, L. Manosa, A. Planes, et al., “Cooling and Heating by Adiabatic Magnetization in the Ni50Mn36In14 Magnetic Shape-Memory Alloy,” Phys. Rev. B: Condens. Matter Mater. Phys. 75, 184412 (2007).CrossRefGoogle Scholar
  34. 34.
    P. J. Webster and K. R. A. Ziebeck, “Heusler Alloys,” in Alloys and Compounds of d-Elements with Main Group Elements. Part 2. Landolt-Börnstein-Group III Condensed Matter. Vol. 19C, (Springer-Verlag, Berlin, 1988), pp. 75–79.Google Scholar
  35. 35.
    A. N. Vasil’ev, V. D. Buchelnikov, T. Takagi, V. V. Khovailo, and E. I. Estrin, “Shape Memory Ferromagnets,” Phys. Usp. 46, 559–588 (2003).CrossRefGoogle Scholar
  36. 36.
    P. Entel, V. D. Buchelnikov, V. V. Khovailo, et al., “Modeling the Phase Diagram of Magnetic Shape Memory Heusler Alloys,” J. Phys. D: Appl. Phys. 39, 865–889 (2006).CrossRefGoogle Scholar
  37. 37.
    V. D. Buchelnikov, A. N. Vasil’ev, V. V. Koledov, S. V. Taskaev, V. V. Khovaylo, and V. G. Shavrov, “Magnetic Shape Memory Alloys: Phase Transitions and Functional Properties,” Phys. Usp. 49, 871 (2006).CrossRefGoogle Scholar
  38. 38.
    A. Planes and L. Manosa, “Ferromagnetic Shape Memory Alloys,” Mater. Sci. Forum 512, 145–152 (2006).CrossRefGoogle Scholar
  39. 39.
    P. Entel, V. D. Buchelnikov, M. E. Gruner, et al., “Shape Memory Alloys: a Summary of Recent Achievements,” Mater. Sci. Forum 583, 21–41 (2008).CrossRefGoogle Scholar
  40. 40.
    P. J. Webster, K. R. A. Ziebeck, S. L. Town, et al., “Magnetic Order and Phase Transition in Ni2MnGa,” Philos. Mag. B. 49, 295–310 (1984).CrossRefGoogle Scholar
  41. 41.
    A. Zheludev, S. M. Shapiro, P. Wocher, et al., “Phonon Anomaly, Central Peak, and Microstructures in Ni2MnGa,” Phys. Rev. B: Condens. Matter. 51, 11310 (1995).CrossRefGoogle Scholar
  42. 42.
    A. Zheludev, S. M. Shapiro, P. Wocher, et al., “Phase Transformation and Phonon Anomalies in Ni2MnGa,” J. Phys. III 5, C8-1139–6 (1995).Google Scholar
  43. 43.
    V. V. Kokorin, V. A. Chernenko, J. Pons, et al., “Acoustic Phonon Mode Condensation in Ni2MnGa Compound,” Solid State Commun. 101, 7–9 (1997).CrossRefGoogle Scholar
  44. 44.
    U. Stuhr, P. Vorderwisch, V. V. Kokorin, et al., “Premartensitic Phenomena in the Ferro- and Paramagnetic Phases of Ni2MnGa” Phys. Rev. B: Condens. Matter. 56, 14360–14365 (1997).CrossRefGoogle Scholar
  45. 45.
    U. Stuhr, P. Vorderwisch, and V.V. Kokorin, “Phonon Softening in Ni2MnGa with High Martensitic Transition Temperature,” J. Phys.: Condens. Matter. 12, 7541–7545 (2000).CrossRefGoogle Scholar
  46. 46.
    V. V. Khovaylo, T. Takagi, A. D. Bozhko et al. “Premartensitic Transition in Ni(2 + x)Mn(1 − x)Ga Heusler Alloys,” J. Phys.: Condens. Matter. 13, 9655 (2001).CrossRefGoogle Scholar
  47. 47.
    V. V. Martynov and V. V. Kokorin, “The Crystal Structure of Thermally- and Stress-Induced Martensites in Ni2MnGa Single Crystals,” J. Phys. III France. 2, 739–749 (1992).CrossRefGoogle Scholar
  48. 48.
    K. Otsuka and C. M. Wayman, Shape Memory Materials (Cambridge University Press, Cambridge, UK, 1998).Google Scholar
  49. 49.
    V. A. Chernenko, C. Segui, E. Cesari, et al., “Sequence of Martensitic Transformations in Ni-Mn-Ga Alloys,” Phys. Rev. B: Condens. Matter Mater. Phys. 57, 2659–2662 (1998).CrossRefGoogle Scholar
  50. 50.
    A. N. Vasil’ev, A. D. Bozhko, V. V. Khovailo, et al., “Structural and Magnetic Phase Transitions in Shape Memory Alloys Ni(2 + x)Mn(1 − x)Ga,” Phys. Rev. B: Condens. Matter Mater. Phys. 59, 1113 (1999).CrossRefGoogle Scholar
  51. 51.
    V. A. Chernenko, “Compositional Instability of β-Phase in Ni-Mn-Ga Alloys,” Scr. Mater. 40, 523–527 (1999).CrossRefGoogle Scholar
  52. 52.
    S. K. Wung and S. T. Wung, “Effect of Composition on Transformation Temperatures of Ni-Mn-Ga Shape Memory Alloys,” Mater. Lett. 57, 4291–4296 (2003).CrossRefGoogle Scholar
  53. 53.
    V. D. Buchelnikov, V. V. Sokolovskiy, H. C. Herper, H. Ebert, M. E. Gruner, S. V. Taskaev, V. V. Khovaylo, A. Hucht, A. Dannenberg, M. Ogura, H. Akai, M. Acet, and P. Entel, “A First-Principles and Monte Carlo Study of Magnetostructural Transition and Magnetic Properties of Ni(2 + x)Mn(1 − x)Ga,” Phys. Rev. B: Condens. Matter Mater. Phys. 81, 094411 (2010).CrossRefGoogle Scholar
  54. 54.
    P. Entel, M. E. Gruner, A. Dannenberg, et al., “Fundamental Aspects of Magnetic Shape Memory Alloys: Insight from ab initio and Monte Carlo Studies,” Mater. Sci. Forum 635, 3–12 (2010).CrossRefGoogle Scholar
  55. 55.
    J. Enkovaara, O. Heczko, A. Ayuela, et al., “Coexistence of Ferromagnetic and Antiferromagnetic Order in Mn Doped Ni2MnGa,” Phys. Rev. B: Condens. Matter Mater. Phys. 67, 212405 (2003).CrossRefGoogle Scholar
  56. 56.
    S. Banik, R. Ranjan, A. Chakrabarti, et al., “Structural Studies of Ni(2 + x)Mn(1 − x)Ga by Powder X-ray Diffraction and Total Energy Calculations,” Phys. Rev. B: Condens. Matter Mater. Phys. 75, 104107 (2007).CrossRefGoogle Scholar
  57. 57.
    Y. K. Kuo, K. M. Sivakumar, H. C. Chen, et al., “Anomalous Thermal Properties of the Heusler Alloy Ni(2 + x)Mn(1 − x)Ga Near the Martensitic Transition,” Phys. Rev. B: Condens. Matter Mater. Phys. 72, 054116 (2005).CrossRefGoogle Scholar
  58. 58.
    A. M. Aliev, A. B. Batdalov, V. D. Buchelnikov, et al., “Magnetocaloric Effect in Ni-Mn-Ga Heusler Alloys,” Proc. First IIF-II R Int. Conf. Magnetic Refrigeration at Room Temperature (Montreux, Switzerland, 2005), pp. 135–142.Google Scholar
  59. 59.
    V. D. Buchelnikov, M. O. Drobosyuk, V. V. Sokolovskiy, et al., “Magnetocaloric Effect in Ni-Mn-Ga and Ni-Co-Mn-In Heusler Alloys,” Proc. MRS Fall Meeting, (Boston, USA, 2009).Google Scholar
  60. 60.
    T. Krenke, M. Acet, E. F. Wassermann, et al., “Martensitic Transitions and the Nature of Ferromagnetism in the Austenitic and Martensitic States of Ni-Mn-Sn Alloys,” Phys. Rev. B: Condens. Matter Mater. Phys. 72, 0114412 (2005).CrossRefGoogle Scholar
  61. 61.
    T. Krenke, M. Acet, E. F. Wassermann, et al., “Ferromagnetism in the Austenitic and Martensitic States of Ni-Mn-In Alloys,” Phys. Rev. B: Condens. Matter Mater. Phys. 73, 174413 (2006).CrossRefGoogle Scholar
  62. 62.
    M. Khan, I. Dubenko, S. Stadler, et al., “Magnetostructural Phase Transitions in Ni50Mn(25 + x)Sb(25 − x) Heusler Alloys,” J. Phys.: Condens. Matter. 20, 235204 (2008).CrossRefGoogle Scholar
  63. 63.
    T. Takenaga, K. Hayashi, and T. Kajitani, “Structural and Magnetic Transition Temperatures of Full Heusler Ni-Mn-Sn Alloys Determined by Van der Pauw Method,” J. Chem. Eng. Jpn. 40, 1328 (2007).CrossRefGoogle Scholar
  64. 64.
    Y. Sutou, Y. Imano, N. Koeda, et al., “Magnetic and Martensitic Transformations of NiMnX (X = In, Sn, Sb) Ferromagnetic Shape Memory Alloys,” Appl. Phys. Lett. 85, 4358 (2004).CrossRefGoogle Scholar
  65. 65.
    M. Khan, I. Dubenko, S. Stadler, et al., “Exchange Bias Behavior in Ni-Mn-Sb Heusler Alloys,” Appl. Phys. Lett. 91, 072510 (2007).CrossRefGoogle Scholar
  66. 66.
    J. Du, Q. Zheng, W. J. Ren, et al., “Magnetocaloric Effect and Magnetic-Field-Induced Shape Recovery Effect at Room Temperature in Ferromagnetic Heusler Alloy Ni-Mn-Sb,” J. Phys. D: Appl. Phys. 40, 5523–5526 (2007).CrossRefGoogle Scholar
  67. 67.
    P. J. Brown, A. P. Grandy, K. Ishida, et al., “The Magnetic and Structural Properties of the Magnetic Shape Memory Compound Ni2Mn1.44Sn0.56,” J. Phys.: Condens. Matter. 18, 2249 (2006).CrossRefGoogle Scholar
  68. 68.
    R. Kainuma, Y. Imaho, W. Ito, et al., “Magnetic-Field-Induced Shape Recovery by Reverse Phase Transformation,” Nature 439, 957–960 (2006).CrossRefGoogle Scholar
  69. 69.
    R. Kainuma, Y. Imaho, W. Ito, et al., “Metamagnetic Shape Memory Effect in a Heusler-Type Ni43Co7Mn39Sn11 Crystalline Alloy,” Appl. Phys. Lett. 88, 192513 (2006).CrossRefGoogle Scholar
  70. 70.
    S. Y. Yu, L. Ma, G. D. Liu, et al., “Magnetic Field-Induced Martensitic Transformation and Large Magnetoresistance in NiCoMnSb Alloys,” Appl. Phys. Lett. 90, 242501 (2007).CrossRefGoogle Scholar
  71. 71.
    A. K. Nayak, K. G. Suresh, and A. K. Nigam, “Observation of Enhanced Exchange Bias Behaviour in NiCoMnSb Heusler Alloys,” J. Phys. D: Appl. Phys. 42, 115004 (2009).CrossRefGoogle Scholar
  72. 72.
    E. Wachtel, F. Henninger, and B. Predel, “Constitution and Magnetic Properties of Ni-Mn-Sn Alloys-Solid and Liquid State,” J. Magn. Magn. Mater. 38, 305–315 (1983).CrossRefGoogle Scholar
  73. 73.
    Z. Li, C. Jing, J. Chen, et al., “Observation of Exchange Bias in the Martensitic State of Ni50Mn36Sn14 Heusler Alloy,” Appl. Phys. Lett. 91, 112505 (2007).CrossRefGoogle Scholar
  74. 74.
    M. Khan, I. Dubenko, S. Stadler, et al., “Exchange Bias in Bulk Mn Rich Ni-Mn-Sn Heusler Alloys,” J. Appl. Phys. 102, 113914 (2007).CrossRefGoogle Scholar
  75. 75.
    E. Sasioglu, L. M. Sandratskii and P. Bruno, “First-Principles Calculation of the Intersublattice Exchange Interactions and Curie Temperatures of the Full Heusler Alloys Ni2MnX (X = Ga, In, Sn, Sb),” Phys. Rev. B: Condens. Matter Mater. Phys. 70, 02442 (2004).CrossRefGoogle Scholar
  76. 76.
    J. Rusz, L. Bergqvist, J. Kudrnovsky, et al., “Exchange Interactions and Curie Temperatures in Ni(2 − x)MnSb Alloys: First-Principles Study,” Phys. Rev. B: Condens. Matter Mater. Phys. 73, 214412 (2006).CrossRefGoogle Scholar
  77. 77.
    M. Ogura, A. Hucht, M. E. Gruner, et al., “Monte Carlo Simulations of the Magnetic Properties of Heusler Alloys,” (unpublished work).Google Scholar
  78. 78.
    V. D. Buchel’nikov, A. N. Vasil’ev, I. E. Dikshtein, A. T. Zayak, V. S. Romanov, and V. G. Shavrov, “Structural and Magnetic Phase Transitions in Ferromagnets with a Shape-Memory Effect,” Phys. Met. Merallogr. 85, 282–288 (1998).Google Scholar
  79. 79.
    A. T. Zayak, V. D. Buchelnikov, and P. Entel, “A Ginzburg-Landau Theory for Ni-Mn-Ga,” Phase Trans. 75, 243–256 (2002).CrossRefGoogle Scholar
  80. 80.
    V. D. Buchelnikov, V. V. Khovailo, A. N. Vasil’ev, et al., “Influence of Volume Magnetostriction on the T−x Phase Diagram of Shape Memory Ni(2 + x)Mn(1 − x)Ga Alloys,” J. Magn. Magn. Mater. 290–291, 854–856 (2005).CrossRefGoogle Scholar
  81. 81.
    V. V. Khovailo, V. D. Buchelnikov, R. Z. Levitin, T. Takagi, and A. N. Vasil’ev, “Phase Diagram and Magnetic Properties of Ferromagnetic Shape Memory Alloys,” in Progress in Ferromagnetism Research (Nova Science, New York, 2006), pp. 293–324.Google Scholar
  82. 82.
    C. Kittel, “Model of Exchange-Inversion Magnetization,” Phys. Rev. 120, 335–342 (1960).CrossRefGoogle Scholar
  83. 83.
    V. D. Buchelnikov, S. V. Taskaev, M. A. Zagrebin, and P. Entel, “Phase Diagrams of Heusler Alloys with Inversion of the Exchange Interaction,” JETP Lett. 85, 560–564 (2007).CrossRefGoogle Scholar
  84. 84.
    V. D. Buchelnikov, S. V. Taskaev, M. A. Zagrebin, V. V. Khovailo, and P. Entel, “Phase Transitions in Heusler Alloys with Exchange Inversion,” J. Magn. Magn. Mater. 320, e175–e178 (2008).CrossRefGoogle Scholar
  85. 85.
    V. D. Buchelnikov, S. V. Taskaev, M. A. Zagrebin, and P. Entel, “Phase Diagrams of Ni2MnX (X = In, Sn, Sb) Heusler Alloys with Inversion of Exchange Interaction,” Mater. Sci. Forum 583, 131–146 (2008).CrossRefGoogle Scholar
  86. 86.
    P. J. von Ranke, N. A. de Oliveira, and S. Gama, “Understanding the Influence of the First-Order Magnetic Phase Transition on the Magnetocaloric Effect: Application to Gd5(SixGe(1 − x))4,” J. Magn. Magn. Mater. 277, 78–83 (2004).CrossRefGoogle Scholar
  87. 87.
    P. J. von Ranke, N. A. de Oliveira, and S. Gama, “Theoretical Investigations on Giant Magnetocaloric Effect in MnAs(1 − x)Sbx,” Phys. Lett. A. 320, 302–306 (2004).CrossRefGoogle Scholar
  88. 88.
    P. J. von Ranke, A. de Campos, L. Caron, et al., “Calculation of the Giant Magnetocaloric Effect in MnFeP0.45As0.55 Compound,” Phys. Rev. B: Condens. Matter Mater. Phys. 70, 094410 (2004).CrossRefGoogle Scholar
  89. 89.
    C. P. Bean and D. S. Rodbell, “Magnetic Disorder as a First-Order Phase Transformation,” Phys. Rev. 126, 104–115 (1962).CrossRefGoogle Scholar
  90. 90.
    H. Yamada and T. Goto, “Itinerant-Electron Metamagnetism and Giant Magnetocaloric Effect,” Phys. Rev. B: Condens. Matter Mater. Phys. 68, 184414 (2003).CrossRefGoogle Scholar
  91. 91.
    S. V. Taskaev, V. D. Buchelnikov, and V. V. Sokolovsky, “Theoretical Description of Magnetocaloric Effect in La-Fe-Si Alloys,” Proc. 2nd IIF-IIR Conf. on Magnetic Refrigeration at Room Temperature (Portoroz, Slovenia, 2007), pp. 89–97.Google Scholar
  92. 92.
    L. G. de Medeiros and N. A. de Oliveira, “Theoretical Calculations of the Magnetocaloric Effect in La(FexSi(1 − x))13” J. Magn. Magn. Mater. 306, 265–271 (2006).CrossRefGoogle Scholar
  93. 93.
    C. Triguero, M. Porta, and A. Planes, “Magnetocaloric Effect in Metamagnetic Systems,” Phys. Rev. B: Condens. Matter Mater. Phys. 76, 094415 (2007).CrossRefGoogle Scholar
  94. 94.
    C. Triguero, M. Porta, and A. Planes, “Coupling between Lattice Vibrations and Magnetism in Ising-Like Systems,” Phys. Rev. B: Condens. Matter Mater. Phys. 73, 054401 (2006).CrossRefGoogle Scholar
  95. 95.
    E. P. Nobrega, N. A. de Olivera, P. J. von Ranke, et al., “Monte Carlo Calculations of the Magnetocaloric Effect in Gd5(SixGe(1 − x))4 Compounds,” Phys. Rev. B: Condens. Matter Mater. Phys. 72, 134426 (2007).CrossRefGoogle Scholar
  96. 96.
    E. P. Nobrega, N. A. de Olivera, P. J. von Ranke, et al., “The Magnetocaloric Effect in R 5S14(R = Gd, Tb): AMonte Carlo Calculation,” J. Phys.: Condens. Matter. 18, 1275 (2006).CrossRefGoogle Scholar
  97. 97.
    E. P. Nobrega, N. A. de Olivera, P. J. von Ranke, et al., “Monte Carlo Calculations of the Magnetocaloric Effect in RAl2 (R = Dy, Er),” J Appl. Phys. 99, 08Q103 (2006).CrossRefGoogle Scholar
  98. 98.
    E. P. Nobrega, N. A. de Olivera, P. J. von Ranke, et al., “Magnetocaloric Effect in (GdxTb(1 − x))5Si by Monte Carlo Simulations,” Phys. Rev. B: Condens. Matter Mater. Phys. 74, 144429 (2006).CrossRefGoogle Scholar
  99. 99.
    E. P. Nobrega, N. A. de Olivera, P. J. von Ranke, et al., “Magnetocaloric Effect in Rare-Earth-Based Compounds: A Monte Carlo Study,” Physica B. 378–380, 716 (2006).CrossRefGoogle Scholar
  100. 100.
    E. P. Nobrega, N. A. de Olivera, P. J. von Ranke, et al., “Monte Carlo Calculations of the Magnetocaloric Effect in (Gd0.6Tb0.4)Si4,” J. Magn. Magn. Mater. 310, 2805 (2007).CrossRefGoogle Scholar
  101. 101.
    N. A. de Oliveira and P. J. von Ranke, “Theoretical Aspects of the Magnetocaloric Effect,” Phys. Rep. 489, 89 (2010). http://doi:10.1016/j.phys-rep.2009.12.006 (2009).CrossRefGoogle Scholar
  102. 102.
    S. V. Taskaev, V. D. Buchelnikov, A. A. Cherechukin, and T. Takagi, “Entropy Change at Magnetocaloric Effect in Ni-Mn-Ga Alloys,” Proc. 19th Int. School-Seminar “New Magnetic Materials of Microelectronics” (Moscow St. Univ., Moscow, 2004), pp. 787–789.Google Scholar
  103. 103.
    V. D. Buchelnikov, S. V. Taskaev, A. M. Aliev, et al., “Magnetocaloric Effect in Ni2.19Mn0.81Ga Heusler Alloys,” Int. J. Appl. Electromagn. Mech. 23, 65–69 (2006).Google Scholar
  104. 104.
    V. D. Buchelnikov, S. V. Taskaev, T. Takagi, et al., “Theoretical Description of Magnetocaloric Effect in Ni-Mn-Ga Alloys,” Proc. First IIF-IIR Int. Conf. on Magnetic Refrigeration at Room Temperature (Montreux, Switzerland, 2005), pp. 143–147.Google Scholar
  105. 105.
    S. Govindjee and G. J. Hall, “A Computational Model for Shape Memory Alloys,” Int. J. Sol. Struct. 37, 735–760 (2000).CrossRefGoogle Scholar
  106. 106.
    V. D. Buchelnikov and S. I. Bosko, “The Kinetics of Phase Transformations in Ferromagnetic Shape Memory Alloys Ni-Mn-Ga,” J. Magn. Magn. Mater. 258–259, 497–499 (2003).CrossRefGoogle Scholar
  107. 107.
    V. D. Buchelnikov, S. V. Taskaev, P. Entel, V. V. Sokolovskiy, et al., “Monte Carlo Study of Influence of Antiferromagnetic interactions on the phase transitions in Ferromagnetic Ni-Mn-X (X = In, Sn, Sb) Alloys,” Phys. Rev. B: Condens. Matter Mater. Phys. 78, 184427 (2008).CrossRefGoogle Scholar
  108. 108.
    V. V. Sokolovskiy, V. D. Buchelnikov, and S. V. Taskaev, “Monte Carlo Calculations of the Magnetocaloric Effect in Ni-Mn-Ga alloys,” Solid State Phenom. 152–153, 493–496 (2009).CrossRefGoogle Scholar
  109. 109.
    V. D. Buchelnikov, V. V. Sokolovskiy, S. V. Taskaev, and V. V. Khovaylo, “Monte Carlo Calculations of the Phase Transformations and the Magnetocaloric Properties in Heusler Ni-Mn-Ga Alloys,” J. Magn. Magn. Mater. http://dx.doi.org/10.1016/j.jmmm.2009.09.012 (2010)
  110. 110.
    V. D. Buchelnikov, V. V. Sokolovskiy, S. V. Taskaev, and P. Entel, “Monte Carlo Study of Magnetocaloric Properties of Ni-Mn-Ga Heusler Alloys,” J. Phys.: Conf. Ser. 200, 032008 (2010).CrossRefGoogle Scholar
  111. 111.
    V. D. Buchelnikov, V. V. Sokolovskiy, S. V. Taskaev, et al., “Monte Carlo Simulations of Magnetocaloric Effect of Heusler Shape Memory Ni-Mn-Ga Alloys,” Proc. 3rd Int. Conf. IIR on Magnetic Refrigeration at Room Temperature (Des Moines, Iowa, USA, 2009), pp. 331–338.Google Scholar
  112. 112.
    V. V. Sokolovskiy, V. D. Buchelnikov, and S. V. Taskaev, “Monte Carlo Study of Magnetostructural Phase Transitions in Ni50Mn(25 + x)Sb(25 − x) Heusler Alloys,” Solid State Phenom. 154, 139–144 (2009).CrossRefGoogle Scholar
  113. 113.
    V. D. Buchelnikov, V. V. Sokolovskiy, S. V. Taskaev, and P. Entel, “Theoretical Modeling of Magnetocaloric Effect in Heusler Ni-Mn-In Alloy by Monte Carlo Study,” Mater. Sci. Forum 635, 137–142 (2010).CrossRefGoogle Scholar
  114. 114.
    V. V. Sokolovskiy, V. D. Buchelnikov, S. V. Taskaev, and P. Entel, “Theoretical Model of the Coupled Magnetostructural Phase Transitions in Heusler Ni-Mn-In Alloys by Monte Carlo Simulation,” J. Phys.: Conf. Ser. 200, 092004 (2010).CrossRefGoogle Scholar
  115. 115.
    V. D. Buchelnikov, V. V. Sokolovskiy, S. V. Taskaev, and P. Entel, “Monte Carlo Study of Magnetocaloric Effect of Heusler Shape Memory Ni-Mn-X (X = In, Sn) Alloys,” Proc. 3nd Int. Conf. IIR on Magnetic Refrigeration at Room Temperature (Des Moines, Iowa, USA, 2009), pp. 339–344.Google Scholar
  116. 116.
    V. V. Sokolovskiy, V. D. Buchelnikov, and S. V. Taskaev, “Modeling of Magnetocaloric Effect in Ni50Mn34In16 Alloy by Monte Carlo Method,” Proc. 21st Int. School-Seminar “The New in Magnetism and Magnetic Materials” (Moscow State Univ., Moscow, 2009), pp. 560–562.Google Scholar
  117. 117.
    V. D. Buchelnikov, V. V. Sokolovskiy, S. V. Taskaev, and N. M. Bauer, “Modeling of Magnetization Temperature Dependence of Ni50Mn35Sn15 by Monte Carlo Method,” Proc. 21st Int. School-Seminar “New in Magnetism and Magnetic Materials” (Moscow State Univ., Moscow, 2009), pp. 546–548.Google Scholar
  118. 118.
    T. Castan, E. Vives, and P.-A. Lindgard, “Modeling Premartensitic Effects in Ni2MnGa: A Mean-Field and Monte Carlo Simulation Study,” Phys. Rev. B: Condens. Matter Mater. Phys. 60, 7071 (1999).CrossRefGoogle Scholar
  119. 119.
    E. Vives, T. Castan, and P.-A. Lindgard, “Degenerate Blume-Emery-Griffiths Model for the Martensitic Transformation,” Phys. Rev. B: Condens. Matter 53, 8915 (1996).CrossRefGoogle Scholar
  120. 120.
    M. Blume, V. Emery, and R. Griffiths, “Ising Model for the λ Transition and Phase Separation in He3-He4 Mixtures,” Phys. Rev. A. 4, 1071–1077 (1971).CrossRefGoogle Scholar
  121. 121.
    F. Y. Wu, “The Potts Model,” Rev. Modern Phys. 54, 235–268 (1982).CrossRefGoogle Scholar
  122. 122.
    C. Choi, J. Kim, and S. Kim, “External Field Dependence of the Correlation Length of the Three-Dimensional Three-State Potts Model,” J. Korean Phys. Soc. 46, 562–564 (2005).Google Scholar
  123. 123.
    T. W. Burkhardt, “Equivalence of the p-Degenerate and Ordinary Blume-Emery-Griffiths Models,” Phys. Rev. B: Condens. Matter Mater. Phys. 60, 12502 (1999).CrossRefGoogle Scholar
  124. 124.
    D. K. Ray and J. P. Jardin, “Elastic and Magnetic Interactions in a Narrow Twofold-Degenerate Band,” Phys. Rev. B: Condens. Matter 33, 5021–5027 (1986).CrossRefGoogle Scholar
  125. 125.
    K. Binder and D. W. Heermann, Monte Carlo Simulation in Statistical Physics (Springer-Verlag, Berlin, 1988).Google Scholar
  126. 126.
    D. P. Landau and K. Binder, A Guide to Monte Carlo Simulation in Statistical Physics (Cambridge University, Cambridge, 2000).Google Scholar
  127. 127.
    H. Gould and J. Tobochnik, An Introduction to Computer Simulation Methods. Applications to Physical Systems (Addison-Wesley, Reading, Mass., 1988).Google Scholar
  128. 128.
    J. S. Amaral and V. S. Amaral, “The Effect of Magnetic Irreversibility on Estimating the Magnetocaloric Effect from Magnetization Measurements.” Appl. Phys. Lett. 94, 042506 (2009).CrossRefGoogle Scholar
  129. 129.
    T. Kanomata, “Measurements of Specific Heat in Heusler Ni-Mn-Ga Alloys,” Proc. Int. Sem. on Shape Memory Alloys and Related Technologies (Institute of Fluid Science, Sendai, Japan, 1999), p. 12.Google Scholar
  130. 130.
    S. Aksoy, T. Krenke, M. Acet, et al., “Tailoring Magnetic and Magnetocaloric Properties of Martensitic Transitions in Ferromagnetic Heusler Alloys,” Appl. Phys. Lett. 91, 241916 (2007).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • V. D. Buchelnikov
    • 1
  • V. V. Sokolovskiy
    • 1
  1. 1.Chelyabinsk State UniversityChelyabinskRussia

Personalised recommendations