Skip to main content
Log in

Three-dimensional magnetic solitons

  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Results are presented on the theoretical investigation of various three-dimensional structures in magnets, such as cnoidal and spiral hedgehogs in the Heisenberg model, localized textures, structures with a degree of mapping equal to unity, antiferromagnetic ringlike domains (“targets”), three-dimensional sources, two-dimensional and three-dimensional vortex and spiral structures in multisublattice antiferromagnets. Structure and properties of hopfions in a uniaxial ferromagnet are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Pergamon, New York, 1984).

    Google Scholar 

  2. A. B. Borisov, “Spiral Vortices in Ferromagnets,” JETP Lett. 73, 242–245 (2001).

    Article  CAS  Google Scholar 

  3. A. B. Borisov, “Three-Dimensional Spiral Structures in a Ferromagnet,” JETP Lett. 76, 84–87 (2002).

    Article  CAS  Google Scholar 

  4. A. B. Borisov, “A New Class of Exact Solutions to the n-Field Equations and Their Geometric Interpretation,” Dokl.-Mathem. 67, 281–282 (2003).

    Google Scholar 

  5. A. B. Borisov, Differential-Geometric Approach and a New Class of Exact Solutions to the n-Field Equations,” Matem. Fiz., Analiz, Geometriya 10, 326–334 (2004).

    Google Scholar 

  6. A. B. Borisov, “New Types of Spatial Structures in Multisublattice Antiferromagnets,” J. Exp. Theor. Phys. 101, 437–451 (2005).

    Article  CAS  Google Scholar 

  7. A. B. Borisov and F. N. Rybakov, “Stationary Precession Topological Solitons with Nonzero Hopf Invariant in a Uniaxial Ferromagnet,” JETP Lett. 88, 264–267 (2008).

    Article  CAS  Google Scholar 

  8. A. B. Borisov and F. N. Rybakov, “Dynamical Toroidal Hopfions in a Ferromagnet with Easy-Axis Anisotropy,” JETP Lett. 90, 544–547 (2009).

    Article  CAS  Google Scholar 

  9. G. E. Volovik and V. P. Mineev, Zh. Eksp. Teor. Fiz. 72, 2256 (1977).

    CAS  Google Scholar 

  10. M. V. Kurik and O. D. Lavrentovich, “Defects in Liquid Crystals: Homotopy Theory and Experimental Studies” Phys.-Uspekhi 31, 196–224 (1988).

    Google Scholar 

  11. A. P. Malozemoff and J. C. Slonczewski, Magnetic Domain Walls in Bubble Materials (Academic, New York, 1979; Mir, Moscow, 1982).

    Google Scholar 

  12. L. M. Pismen, Vortices in Nonlinear Fields (Clarendon Press, Oxford, 1999).

    Google Scholar 

  13. M. A. Lavrent’ev and B. A. Shabat, Hydrodynamic Problems and Their Mathematical Models (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  14. A. F. Andreev, Zh. Eksp. Teor. Fiz. 74, 786 (1978).

    Google Scholar 

  15. A. F. Andreev and V. I. Marchenko, “Symmetry and the Macroscopic Dynamics of Magnetic Materials,” Phys.-Uspekhi 23, 21–34 (1980).

    Article  Google Scholar 

  16. F. V. Volkov and A. A. Zheltukhin, Zh. Eksp. Teor. Fiz. 78, 1867 (1980).

    Google Scholar 

  17. M. K. Volkov and V. N. Pervushin, Considerably Nonlinear Quantum Theories, Dynamical Symmetries, and Physics of Mesons (Atomizdat, Moscow, 1979) [In Russian].

    Google Scholar 

  18. I. E. Dzyaloshinskii and V. I. Man’ko, Zh. Eksp. Teor. Fiz. 46, 1352 (1966).

    Google Scholar 

  19. I. E. Dzyaloshinskii and B. I. Kukharenko, Zh. Eksp. Teor. Fiz. 75, 2290 (1978).

    CAS  Google Scholar 

  20. V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevskii, Theory of Solitons. The Inverse Problem Method (Plenum Press, New York, 1984; Nauka, Moscow, 1980).

    Google Scholar 

  21. V. E. Zakharov and A. V. Mikhailov, Zh. Eksp. Teor. Fiz. 74, 1953 (1978).

    Google Scholar 

  22. G. Darboux, Lecons sur le systemes orthogonaux et les coordonnees curvilignes (Gauthier-Villars, Paris, 1910).

    Google Scholar 

  23. V. E. Zakharov, Duke Math. J. 94, 103 (1998).

    Article  Google Scholar 

  24. P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, 1953; Inostrannaya Literatura, Moscow, 1958).

  25. G. Korn and T. Korn, Mathematical Handbook for Scientists and Engineers. Definitions, Theorems and Formulas for Reference and Review (New-York, 1961; Nauka, Moscow, 1968).

  26. H. Bateman and A. Erdelyi, Higher Transcendental Functions (McGraw-Hill, New York, 1953; Nauka, Moscow, 1966).

    Google Scholar 

  27. B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko, Contemporary Geometry (Nauka, Moscow, 1979) [In Russian].

    Google Scholar 

  28. B. A. Ivanov and A. K. Kolezhuk, Fiz. Nizk. Temp. 21, 355 (1995).

    CAS  Google Scholar 

  29. A. H. Eschenfelder, Magnetic Bubble Technology (Springer-Verlag, Berlin, 1981; Mir, Moscow, 1983).

    Book  Google Scholar 

  30. G. S. Kandaurova, “New Phenomena in the Low-Frequency Dynamics of Magnetic Domain Ensembles” Phys.-Usp. 45, 1051–1072 (2002).

    Article  CAS  Google Scholar 

  31. V. P. Voronov, B. A. Ivanov, and A. M. Kosevich, Zh. Eksp. Teor. Fiz. 84, 2235 (1983).

    Google Scholar 

  32. B. A. Ivanov and V. A. Stefanovich, Zh. Eksp. Teor. Fiz. 91, 638 (1986).

    Google Scholar 

  33. R. H. Hobart, Proc. Phys. Soc. 82, 201 (1963).

    Article  Google Scholar 

  34. G. M. Derrick, J. Math. Phys. 5, 1252 (1964).

    Article  CAS  Google Scholar 

  35. R. Rajaraman, Solitons and Instantons: An Introduction to Solitons and Instantons in Quantum Field Theory (North-Holland, Amsterdam, 1982; IO NFMI, Novokuznetsk, 1998).

    Google Scholar 

  36. A. Kundu and Y.P. Rybakov, J. Phys. A 15, 269 (1982).

    Article  Google Scholar 

  37. J. Gladikowski and M. Hellmund, Phys. Rev. D 56, 5194 (1997).

    Article  CAS  Google Scholar 

  38. B. A. Ivanov and A. M. Kosevich, Pis’ma Zh. Eksp. Teor. Fiz. 24, 495 (1976).

    Google Scholar 

  39. B. A. Ivanov and A. M. Kosevich, Zh. Eksp. Teor. Fiz. 72, 2000 (1977).

    Google Scholar 

  40. T. Ioannidou and P. M. Sutcliffe, Physica D 150, 118 (2001).

    Article  Google Scholar 

  41. G. E. Volovik and V. P. Mineev, Zh. Eksp. Teor. Fiz. 73, 767 (1977).

    CAS  Google Scholar 

  42. I. E. Dzyaloshinskii and B. A. Ivanov, Pis’ma Zh. Eksp. Teor. Fiz. 29, 592 (1979).

    Google Scholar 

  43. A. M. Kamchatnov, Zh. Eksp. Teor. Fiz. 82, 117 (1982).

    Google Scholar 

  44. L. D. Faddeev and A. J. Niemi, Nature 387, 58 (1997).

    Article  CAS  Google Scholar 

  45. J. Hietarinta and P. Salo, Phys. Rev. D 62, 081701 (2000).

    Article  Google Scholar 

  46. N. R. Cooper, Phys. Rev. Lett. 82, 1554 (1999).

    Article  CAS  Google Scholar 

  47. P. Sutcliffe, Phys. Rev. B: Condens. Matter Mater. Phys. 76, 184439 (2007).

    Article  Google Scholar 

  48. N. Papanicolaou and T.N. Tomaras, Nucl. Phys. B 360, 425 (1991).

    Article  Google Scholar 

  49. A. M. Kosevich, B. A. Ivanov, and A. S. Kovalev, Nonlinear Waves of Magnetization. Dynamical and Topological Solitons (Naukova Dumka, Kiev, 1983) [In Russian].

    Google Scholar 

  50. B. N. Pshenichnyi and Yu. M. Danilin, Numerical Methods in Extremal Problems (Nauka, Moscow, 1975) [In Russian].

    Google Scholar 

  51. A. M. Kosevich, B. A. Ivanov, and A. S. Kovalev, Phys. Rep. 194, 117 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borisov, A.B., Rybakov, F.N. Three-dimensional magnetic solitons. Phys. Metals Metallogr. 112, 745–766 (2011). https://doi.org/10.1134/S0031918X11070040

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X11070040

Keywords

Navigation