Skip to main content
Log in

Coupled oscillations of electron and nuclear spins and spontaneous polarization in multiferroics: Specific features of NMR

  • Theory of Metals
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Coupled oscillations of electron and nuclear spins and spontaneous polarization in films of multiferroics have been analyzed. The analysis has been performed on the example of antiferromagnetic films of BiFeO3 possessing weak ferromagnetism, magnetic anisotropy of the easy-plane type, and spontaneous polarization. The natural frequencies of the oscillations and the tensor of the high-frequency magnetoelectric susceptibility of the films (response to the ac magnetic and ac electric fields) have been calculated. Specific features of the susceptibility near the frequency of the nuclear magnetic resonance (NMR) have been investigated. The main dynamic characteristics of the system under consideration have been analyzed: the NMR frequencies, frequency shifts, enhancement coefficients. The possibility is discussed of the appearance of fundamentally new effects in these films in the region of NMR spectroscopy of magnets: (a) excitation of nuclear spins by an ac electric field with their subsequent detection with the use of the ac component of the magnetization (nuclear magnetoelectric resonance (NMER)); (b) excitation of the NMR signal by an ac magnetic field with its subsequent detection with the use of the ac component of the spontaneous polarization (nuclear electric-magnetic resonance (NEMR)).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. K. Zvezdin and A. A. Mukhin, “On the Effect of Inhomogeneous Magnetoelectric (Flexomagnetoelectric) Interaction on the Spectrum and Properties of Magnons in Multiferroics,” JETP Lett. 89, 328–332 (2009).

    Article  CAS  Google Scholar 

  2. I. E. Dzyaloshinskii, “Magnetoelectricity in Ferromagnets,” Europhys. Lett. 83, 67001 (2008).

    Article  Google Scholar 

  3. A. S. Logginov, G. A. Meshkov, A. V. Nikolaev, and A. P. Pyatakov, “Magnetoelectric Control of Domain Walls in a Ferrite Garnet Film,” JETP Lett. 86, 115–119 (2007).

    Article  CAS  Google Scholar 

  4. M. I. Kurkin, V. V. Leskovets, V. V. Nikolaev, E. A. Turov, and L. V. Turov, “NMR Excitation by an Electric Field as a Dynamic Manifestation of Magneto-electric and Antiferroelectric Interactions,” Phys. Solid State 45, 685–690 (2003).

    Article  CAS  Google Scholar 

  5. V. V. Leskovets and E. A. Turov, “Effect of Electric Field on NMR Spectra in Centroantisymmetric Antiferromagnets,” Phys. Solid State 42, 903–908 (2000).

    Article  CAS  Google Scholar 

  6. A. M. Kadomtseva, A. K. Zvezdin, Yu. F. Popov, A. P. Pyatakov, and G. P. Vorob’ev, “Space-Time Parity Violation and Magnetoelectric Interactions in Antiferromagnets,” JETP Lett. 79, 571–581 (2004).

    Article  CAS  Google Scholar 

  7. A. V. Zalesskii, A. A. Frolov, T. A. Khimich, and A. A. Bush, “Composition-Induced Transition of Spin-Modulated Structure into a Uniform Antiferromagnetic State in a Bi1 − x LaxFeO3 System Studied Using 57Fe NMR,” Phys. Solid State 45, 141–145 (2003).

    Article  CAS  Google Scholar 

  8. V. S. Pokatilov, A. S. Sigov, and A. O. Konovalova, “NMR and Mössbauer Study of Multiferroic BiFeO3,” Bull. Russ. Acad. Sci.: Phys. 74, 347–351 (2010).

    Article  Google Scholar 

  9. E. A. Turov, A. P. Tankeev, and M. I. Kurkin, “Spin Waves and NMR Resonance in Domain Walls of Ferromagnets,” Izv. Akad. Nauk SSSR, Ser. Fiz. 34, 982–990 (1970).

    CAS  Google Scholar 

  10. C. H. Cobb, V. Jaccarino, M. A. Butler, J. P. Remeika, and H. Yasuoka, “Low Temperature 53Cr in Ferromagnet CrBr3,” Phys. Rev. B: Solid State 7, 307–318 (1973).

    Article  CAS  Google Scholar 

  11. M. A. Butler, “Wall Resonance in Ferromagnets,” Int. J. Magn. 4, 131–138 (1973).

    CAS  Google Scholar 

  12. A. K. Zvezdin, “Domain Walls and NMR in Orthoferrites,” Zh. Eksp. Teor. Fiz. 68, 1434–1448 (1975).

    CAS  Google Scholar 

  13. A. V. Zalesskii, V. D. Doroshev, and V. G. Krivenko, “NMR Spectra of 57Fe Nuclei in Domains and Domain Walls of Hexagonal Ferrites with M and W Structures,” Fiz. Tverd. Tela 24(1), 20–27 (1982).

    CAS  Google Scholar 

  14. G. A. Smolenskii, V. V. Lemanov, G. M. Nedlin, M. P. Petrov, and R. V. Pisarev, Physics of Magnetic Dielectrics (Nauka, Leningrad, 1974) [in Russian].

    Google Scholar 

  15. K. L. Livesey and R. L. Stamps, “High-Frequency Susceptibility of Weak Ferromagnet with Magnetostrictive Magnetoelectric Coupling: Using Heterostructures to Tailor Electromagnon Frequencies,” Phys. Rev. B: Condens. Matter Mater. Phys. 81, 094405 (2010).

    Article  Google Scholar 

  16. G. A. Smolenskii and I. E. Chupis, “Ferroelectromagnets,” Sov. Phys. Usp. 25, 475–493 (1982)

    Article  Google Scholar 

  17. A. K. Zvezdin and A. P. Pyatakov, “Inhomogeneous Magnetoelectric Interaction in Multiferroics and Related New Physical Effects,” Phys.-Usp. 52, 845–851 (2009).

    Article  CAS  Google Scholar 

  18. V. G. Bar’yakhtar and I. E. Chupis, “To Phenomenological Theory of Ferromagnetism,” Fiz. Tverd. Tela 10, 3547–3552 (1968).

    Google Scholar 

  19. C. Ederer and N. A. Spaldin, “Weak Ferromagnetism and Magnetoelectric Coupling in Bismuth Ferrite,” Phys. Rev. B: Condens. Matter Mater. Phys. 71, 060401 (2005).

    Article  Google Scholar 

  20. T. Zhao, A. Scholl, F. Zavaliche, K. Lee, M. Barry, A. Doran, M. P. Crus, Y. H. Chu, C. Ederer, N. A. Spaldin, R. R. Das, D. M. Kim, S. H. Beak, C. B. Eom, and R. Ramesh, “Electrical Control of Antiferromagnetic Domains in Multiferroic BiFeO3 Films at Room Temperature,” Nature Mater. 5, 823–829 (2006).

    Article  CAS  Google Scholar 

  21. F. Bai, J. Wang, M. Wuttig, J. F. Li, N. Wang, A. P. Pyatakov, A. K. Zvesdin, L. E. Gross, and D. Viehland, “Destruction of Spin Cycloid in (111)c-Oriented BiFeO3 Thin Films by Epitaxial Constraint: Enhanced Polarization and Release of Latent Magnetization,” Appl. Phys. Lett. 86, 032511 (2005).

    Article  Google Scholar 

  22. E. A. Turov and V. G. Kuleev, “Coupled Oscillations of Electron and Nuclear Spins in Antiferromagnets,” Zh. Eksp. Teor. Fiz. 49 (17), 248–256 (1965).

  23. M. I. Kurkin and A. P. Tankeev, “Effects of Enhancement and Dynamic Shift of NMR Frequency and Their Connection with Local Properties of Magnets,” Fiz. Met. Metalloved. 42(5), 915–930 (1976).

    Google Scholar 

  24. V. G. Bar’yakhtar and V. A. Popov, Domain Structure of Antiferromagnets. Problems of Solid State Physics (Ural. Nauchn. Tsentr Akad. Nauk SSSR, Sverdlovsk, 1975) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.P. Tankeyev, V.V. Smagin, M.A. Borich, 2011, published in Fizika Metallov i Metallovedenie, 2011, Vol. 112, No. 4, pp. 339–350.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tankeyev, A.P., Smagin, V.V. & Borich, M.A. Coupled oscillations of electron and nuclear spins and spontaneous polarization in multiferroics: Specific features of NMR. Phys. Metals Metallogr. 112, 319–329 (2011). https://doi.org/10.1134/S0031918X11040272

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X11040272

Keywords

Navigation