Skip to main content
Log in

Physical processes of the formation of structure and properties of films of transition-metal diborides

  • Strength and Plasticity
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Physical processes are described that occur during the formation of the structure of film coatings of transition-metal diborides produced by the method of magnetron sputtering (in the DC and HF modes). The factors that affect the formation of the structure of the film coatings (energy of condensing atoms and substrate temperature) have been determined. The role of each factor in the formation of the film structure is shown. The optimum energy conditions for the formation of the transition-metal diboride films with the highest physicomechanical characteristics have been determined, i.e., the bias voltage equal to −50 V (DC regime) and ±50 V (HF regime); the substrate temperature ∼500°C. Under these conditions, there are formed hyperstoichiometric MB2.4 films with a grain size of ∼20 nm and greater. If the energy supplied to the growing film is insufficient in order to stimulate its crystallization and the formation of a (00.1) growth texture, hypostoichiometric nanostructured or amorphous (clusterized) films are formed. A physical model of the formation of critical nuclei leading to growth of a columnar structure in the films of transition-metal diborides is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Andrievskii, “Nanomaterials: Conception and Contemporary Problems,” Ross. Khim. Zh. 66, 50–56 (2002).

    Google Scholar 

  2. A. D. Korotaev, V. Yu. Moshkov, S. V. Ovchinnikov, et al., “Nanostructure and Nanocomposite Superhard Coatings,” Fiz. Mezomekh. 8, 103–116 (2005).

    Google Scholar 

  3. A. D. Pogrebnyak, A. P. Shpak, N. A. Azarenkov, and V. M. Beresnev, “Structures and Properties of Hard and Superhard Nanocomposite Coatings,” Usp. Fiz. Nauk 179(1), 35–64 (2009) [Phys.-Usp. 52 (1), 29–54 (2009)].

    Article  Google Scholar 

  4. R. N. Mayrhofer, S. Mitterer, and N. Clements, “Microstructural Design of Hard Coatings,” Prog. Mater. Sci. 51, 1032–1114 (2006).

    Article  CAS  Google Scholar 

  5. R. A. Andrievskii and A. M. Glezer, “Size Effects in Nanocrystalline Materials: I. Structure Characteristics, Thermodynamics, Phase Equilibria, and Transport Phenomena,” Fiz. Met. Metalloved. 88(1), 50–73 (1999) [Phys. Met. Metallogr. 88 (1), 45–66 (1999)].

    CAS  Google Scholar 

  6. R. A. Andrievskii and A. M. Glezer, “Size Effects in Nanocrystalline Materials: II. Mechanical and Physical Properties,” Fiz. Met. Metalloved. 89(1), 91–112 (2000) [Phys. Met. Metallogr. 89 (1), 83–103 (2000)].

    CAS  Google Scholar 

  7. C. Mitterer, M. Rauter, P. Rödhamm, “Sputter Deposition of Ultrahard Coatings within the System Ti-B-C-N,” Surf. Coat. Technol. 41(3), 351–363 (1990.).

    Article  CAS  Google Scholar 

  8. E. Brandstetter, C. Mitterer, and R. Ebner, “A Transmission Electron Microscopy Study on Sputtered Zr-B and Zr-B-N Films,” Thin Solid Films 201(1), 123–135 (1991).

    Article  CAS  Google Scholar 

  9. C. Mitterer, A. Übleis, and R. Ebner, “Sputter Deposition of Wear-Resistant Coatings within the System Zr-B-N,” Mater. Sci. Eng. A 140, 670–675 (1991).

    Article  Google Scholar 

  10. C. Mitterer, P. Losbichler, W. S. M. Werner, et al., “Sputter Deposition of Decorative Coatings Based on ZrB2 and ZrB12,” Surf. Coat. Technol. 54–55Part 1, 329–334 (1992).

    Google Scholar 

  11. C. Mitterer, J. Komenda-Stallmaier, P. Losbichler, et al., “Deposition of Decorative Boride Coatings,” Vacuum 46(11), 1281–1294 (1995).

    Article  CAS  Google Scholar 

  12. P. Losbichler and C. Mitterer, “Non-Reactively Sputtered TiN and TiB2 Films: Influence of Activation Energy on Film Growth,” Surf. Coat. Technol. 97, 567–573 (1997).

    Article  CAS  Google Scholar 

  13. E. Kelesoglu and C. Mitterer, “Structure and Properties of TiB2 Based Coatings Prepared by Unbalanced DC Magnetron Sputtering,” Surf. Coat. Technol. 98(1–3), 1483–1489 (1998).

    Article  CAS  Google Scholar 

  14. E. Kelesoglu, C. Mitterer, M. K. Kazmanli, and M. Ürgen, “Microstructure and Properties of Nitride and Diboride Hard Coatings Deposited under Intense Mild-Energy Ion Bombardment,” Surf. Coat. Technol. 116–119, 133–140 (1999).

    Article  Google Scholar 

  15. C. Mitterer, P. H. Mayrhofer, M. Beschliesser, et al., “Microstructure and Properties of Nanocomposite Ti-B-N and Ti-B-C Coatings,” Surf. Coat. Technol. 120–121, 405–411 (1999).

    Article  Google Scholar 

  16. M. Berger, M. Larsson, and S. Hogmark, “Evaluation of Magnetron-Sputtered TiB2 Intended for Tribological Applications,” Surf. Coat. Technol. 124, 253–261 (2000).

    Article  CAS  Google Scholar 

  17. R. Wiedemann, H. Oettel, and M. Jerenz, “Structure of Deposited and Annealed TiB2 Layers,” Surf. Coat. Technol. 97, 313–321 (1997).

    Article  CAS  Google Scholar 

  18. R. Wiedeman, V. Weihnacht, and H. Oettel, “Structure and Mechanical Properties of Amorphous Ti-B-N Coatings,” Surf. Coat. Technol. 116–119, 302–309 (1999).

    Article  Google Scholar 

  19. J. Chen and J. A. Barnard, “Growth, Structure and Stress of Sputtered TiB2 Thin Films,” Mater. Sci. Eng., A 191, 233–238 (1995).

    Article  Google Scholar 

  20. M. S. Wong and Y. C. Lee, “Deposition and Characterization of Ti-B-N Monolithic and Multilayer Coatings,” Surf. Coat. Technol. 120–121, 194–199 (1999).

    Article  Google Scholar 

  21. A. Shutou, T. Matsui, H. Tsuda, et al., “Structural and Electric Properties of TiB2 Thin Films by RF Sputtering,” Mater. Lett. 45, 143–148 (2000).

    Article  CAS  Google Scholar 

  22. F. Kunc, J. Musil, P. H. Mayrhofer, and F. Mitterer, “Low-Stress Superhard Ti-B Films Prepared by Magnetron Sputtering,” Surf. Coat. Technol. 175, 744–781 (2003).

    Article  Google Scholar 

  23. J. D. Wilcock and P. S. Campbell, “A Sensitive Bending Beam Apparatus for Measuring the Stress in Evaporated Thin Films,” Thin Solid Films 3(1), 3–12 (1969).

    Article  Google Scholar 

  24. P. H. Mayrhofer and C. Mitterer, “High-Temperature Properties of Nanocomposite TiBxNy and TiBxCy Coatings,” Surf. Coat. Technol. 133–134, 131–137 (2000).

    Article  Google Scholar 

  25. F. Huang, G. Wei, J. A. Barnard, and M. L. Weaver, “Microstructure and Stress Development in Magnetron Sputtered TiAlCr(N) Films,” Surf. Coat. Technol. 146–147, 391–397 (2001).

    Article  Google Scholar 

  26. P. Holudar, M. Jilek, and M. Sima, “Present and Possible Future Applications of Superhard Nanocomposite Coatings,” Surf. Coat. Technol. 133–134, 145–151 (2000).

    Article  Google Scholar 

  27. F. Vaz, L. Rebouta, Ph. Goudeau, et al., “Residual Stress State in Sputtered Ti1 − x SixNy Films,” Thin Solid Films 402, 195–202 (2002).

    Article  CAS  Google Scholar 

  28. W. Herr and E. Brozseil, “The Influence of a Heat Treatment on the Microstructure and Mechanical Properties of Sputtered Coatings,” Surf. Coat. Technol. 97, 335–340 (1997).

    Article  CAS  Google Scholar 

  29. P. H. Mayrhofer, C. Mitterer, J. G. Wen, et al., “Self Organized Nanocolumnar Structure in Superhard TiB2 Thin Films,” Appl. Phys. Lett. 86, 131909–131923 (2005).

    Article  Google Scholar 

  30. P. H. Mayrhofer, C. Mitterer, J. G. Wen, and I. Petrov, “Thermal Induced Self-Hardening of Nanocrystalline Ti-B-N Films,” Appl. Phys. 100, 44301–44308 (2006).

    Article  Google Scholar 

  31. P. H. Mayrhofer, C. Mitterer, and H. Clemens, “Self-Organized Nanostructures in Hard Ceramic Coatings,” Adv. Eng. Mater. 7, 1071–1082 (2005).

    Article  CAS  Google Scholar 

  32. P. H. Mayrhofer and C. Mitterer, “High-Temperature Properties of Nanocomposite TiBxNy and TiBxCy Coatings,” Surf. Coat. Technol. 133–134, 131–137 (2000).

    Article  Google Scholar 

  33. P. H. Mayrhofer and M. Stoiber, “Thermal Stability of Superhard Ti-B-N Coatings,” Surf. Coat. Technol. 201, 6148–6153 (2007).

    Article  CAS  Google Scholar 

  34. K. L. Dahm, L. R. Jordan, J. Haase, and P. A. Dearnley, “Magnetron Sputter Deposition of Chromium Diboride Coatings,” Surf. Coat. Technol. 108, 413–418 (1998).

    Article  Google Scholar 

  35. A. A. Goncharov, V. V. Petukhov, and D. N. Terpii, “Nanostructural Films of Vanadium Borides,” Neorg. Mater. 41(7), 799–802 (2005).

    Article  Google Scholar 

  36. A. A. Goncharov, V. V. Petukhov, and D. N. Chaika, “Electrical and Physicomechanical Properties of Nanostructured Vanadium Boride Films,” Fiz. Met. Metalloved. 100(3), 26–31 (2005) [Phys. Met. Metallogr. 100 (3), 222–227 (2005)].

    CAS  Google Scholar 

  37. A. I. Bazhin, A.A. Goncharov, V.V. Petukhov, et al., “Magnetron Sputtering of a Vanadium-Diboride Target in Ar+N2 Gaseous Mixtures,” Vacuum 80(8), 918–922 (2006).

    Article  CAS  Google Scholar 

  38. A. A. Goncharov, P. I. Ignatenko, V. V. Petukhov, et al., “Composition, Structure and Properties of Tantalum Boride Nanostructured Films,” Zh. Tekh. Fiz. 76(10), 87–90 (2006) [Tech. Phys. 51 (10), 1340–1343 (2006)].

    Google Scholar 

  39. A. A. Goncharov, P. I. Ignatenko, V. A. Konovalov, et al., “Phase Formation, Structure, and State of Stress of Nanostructured Tantalum Boride Films,” Fiz. Met. Metalloved. 103(1), 80–85 (2007) [Phys. Met. Metallogr. 103 (1), 77–82 ()].

    CAS  Google Scholar 

  40. A. A. Goncharov, G. K. Volkova, V. A. Konovalov, and V. V. Petukhov, “Effect of Underlayer on Orientation and Structure of Thin Films Obtained by High-Frequency Magnetron Sputtering of Tantalum Diboride Target,” Metallofiz. Noveishie Tekhnol., 28, 1621–1628 (2006).

    CAS  Google Scholar 

  41. A. A. Goncharov, V. A. Konovalov, and V. A. Stupak, “Effect of Bias Voltage on the Structure of Thin Tantalum Boride Films,” Pis’ma Zh. Tekh. Fiz. 33(5), 12–17 (2007) [Tech. Phys. Lett. 33 (3), 190–191 (2007)].

    Google Scholar 

  42. A. I. Bazhin, A. A. Goncharov, V. A. Konovalov, and V. A. Stupak, “Effect of Bias Voltage on Structure and Phase Composition of Tantalum and Hafnium Thin Films Deposited by RF-Magnetron Sputtering,” Poverkhnost, No. 7, 79–82 (2008) [J. Surf. Invest. no. 7, 79–82 (2008)].

  43. A. A. Goncharov, V. A. Konovalov, G. K. Volkova, and V. A. Stupak, “Size Effect on the Structure of Nanocrystalline and Cluster Films of Hafnium Diboride,” Fiz. Met. Metalloved. 108(4), 388–394 (2009) [Phys. Met. Metallogr. 108 (4), 368–373 (2009)].

    CAS  Google Scholar 

  44. A. A. Goncharov, V. A. Konovalov, S. N. Dub, et al., “Structure, Composition, and Physicomechanical Characteristics of Tantalum Diboride Films,” Fiz. Met. Metalloved. 107(3), 303–308 (2009) [Phys. Met. Metallogr. 107 (3), 285–290 (2009)].

    CAS  Google Scholar 

  45. A. A. Goncharov, A. V. Agulov, V. A. Stupak, and V. V. Petukhov, “Factors that affect the Formation of the Structure and Composition of Hafnium Diboride Films,” Neorg. Mater. (in press).

  46. A. A. Goncharov, “Mechanism of Formation of the Columnar Structure in Films of Transition Metal Diborides,” Fiz. Tverd. Tela 50(1), 163–172 (2008) [Phys. Solid State 50 (1), 168–172 (2008)].

    Google Scholar 

  47. A. A. Goncharov, A. V. Agulov, and V. V. Petukhov, “Some Features of the Formation of Structure and Properties of Transition Metal Diboride and Boronitride Films,” Pis’ma Zh. Tekh. Fiz. 35(24), 35–42 (2009) [Tech. Phys. Lett. 35 (12), 1140–1143 (2007)].

    Google Scholar 

  48. N. Panich, P. Wangyao, S. Hannongbua, et al., “Tribological Study of Nano-Multilayered Ultra Hard Coatings Based on TiB2,” Rev. Adv. Mater. Sci. 13, 117–124 (2006).

    Article  CAS  Google Scholar 

  49. D. V. Shtanskii, S. A. Kulinich, E. A. Levashov, and J. J. Moore, “Structure and Physical-Mechanical Properties of Nanostructured Thin Films,” Fiz. Tverd. Tela 45(6), 1122–1129 (2003) [Phys. Solid State 45 (6), 1177–1184 (2003)].

    Google Scholar 

  50. D. V. Shtanskii, F. V. Kiryukhantsev-Korneev, et al., “Structure and Properties of Ti-B-N, Ti-Cr-B-(N), and Cr-B-(N) Coatings Deposited by Magnetron Sputtering of Targets Prepared by Self-Propagating High-Temperature Synthesis,” Fiz. Tverd. Tela 47(2), 242–251 (2005) [Phys. Solid State 47 (2), 252–262 (2005)].

    Google Scholar 

  51. O. V. Sobol’, “Nanostructural Ordering in W-Ti-B Condensates,” Fiz. Tverd. Tela 49(6), 1104–1110 (2007) [Phys. Solid State 49 (6), 1161–1167 (2007)].

    Google Scholar 

  52. O. V. Sobol’, S. N. Dub, O. N. Grigor’ev, et al., “Phase Composition, Structure, Stress State, and Mechanical Characteristics of Triode-Sprayed W-Ti-B Condensates,” Sverkhtverd. Mater., No. 5, 38–47 (2005).

  53. R. A. Andrievskii, G. V. Kalinnikov, N. P. Kobelev, et al., “Structure and Physicomechanical Properties of Nanostructural Boride-Nitride Films,” Fiz. Tverd. Tela 39(10), 1859–1863 (1997).

    CAS  Google Scholar 

  54. R. A. Andrievskii, G. V. Kalinnikov, and D. V. Shtanskii, “High-Resolution Transmission and Scanning Electron Microscopy of Boride-Nitride Nanostructured Films,” Fiz. Tverd. Tela 42(4), 741–746 (2000) [Phys. Solid State 42 (4), 760–766 (2000)].

    Google Scholar 

  55. R. A. Andrievskii, G. V. Kalinnikov, et al., “Nanoindentation and Strain Characteristics of Nanostructured Boride/Nitride Films,” Fiz. Tverd. Tela 42(9), 1624–1628 (2000) [Phys. Solid State 42 (4), 1671–1674 (2000)].

    Google Scholar 

  56. G. V. Kalinnikov, R. A. Andrievskii, V. N. Kopylov, et al., “Properties of Nanostructured and Amorphous Films in the TiB2-B4C System,” Fiz. Tverd. Tela 50(2), 360–364 (2008) [Phys. Solid State 50 (2), 374–378 (2008)].

    Google Scholar 

  57. X. Wnag, P. J. Martin, and T. J. Kinder, “Characteristics of TiB2 Films Prepared by Ion Beam Sputtering,” Surf. Coat. Technol. 78(1–3), 37–41 (1996).

    Article  Google Scholar 

  58. G. V. Samsonov and I. M. Vinitskii, Handbook of Refractory Compounds (Metallurgiya, Moscow, 1976; Plenum Press, New York, 1980).

    Google Scholar 

  59. R. A. Andrievskii and I. I. Spivak, Strength of Refractory Compounds and Materials Based on Them: A Handbook (Metallurgiya, Chelyabinsk, 1989) [in Russian].

    Google Scholar 

  60. B. S. Danilin, Use of Low-Temperature Plasma for Deposition of Thin Films (Energoatomizdat, Moscow, 1989) [in Russian].

    Google Scholar 

  61. S. Veprek, “Different Approaches to Superhard Coatings and Nanocomposites,” Thin Solid Films 476(1), 1–29 (2005).

    Article  CAS  Google Scholar 

  62. J. W. Christian, The Theory of Transformations in Metals and Alloys, Part I (Pergamon, New York, 1975; Mir, Moscow, 1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.A. Goncharov, 2011, published in Fizika Metallov i Metallovedenie, 2011, Vol. 111, No. 3, pp. 325–336.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goncharov, A.A. Physical processes of the formation of structure and properties of films of transition-metal diborides. Phys. Metals Metallogr. 111, 314–324 (2011). https://doi.org/10.1134/S0031918X11020074

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X11020074

Keywords

Navigation