Skip to main content
Log in

Structure and electrical resistance of dispersion-strengthened vacuum-deposited Cu–Al2O3 nanocomposites

  • Electrical and Magnetic Properties
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Methods of X-ray diffraction and transmission electron microscopy were used to study the microstructure of dispersion-strengthened Cu-Al2O3 nanocomposites obtained by the method of simultaneous deposition of Cu and Al2O3 from the vapor phase. The effect of the size of particles of the oxide (Al2O3) and of their content on the electrical resistance of the composite has been considered. The results obtained make it possible to suppose that the main structural factor that determines the electrical resistance of the composite are nanodispersed particles of Al2O3 with a size of less than 20 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Il’inskii, Structure and Strength of Layered and Dispersion-Hardened Films (Metallurgiya, Moscow, 1986) [in Russian].

    Google Scholar 

  2. M. Besterci, P. Hvizdos, K. Sulleiova, and Ch. Edtmaier, “Processing, Microstructure and Creep Testing of Pt-Y2O3 Composites,” Mater. Des. 28, 2540–2543 (2007).

    Article  CAS  Google Scholar 

  3. J. Troxell, A. Nadkarni, and J. Abrams, “Dispersion-Strengthened Silver,” Adv. Mater. Processes 159(1), 75–77 (2001).

    CAS  Google Scholar 

  4. P. A. Panchekha, A. I. Il’inskii, I. F. Savchenko, and G. E. Lyakh, “Structure of Condensed Dispersion-Strengthened Composites on Nickel and Copper Base,” Metallofizika 2(2), 112–120 (1980).

    CAS  Google Scholar 

  5. M. S. Motta, P. K. Jena, E. A. Brocchi, and I. G. Solorzano, “Characterization of Cu-Al2O3 Nano-Scale Composites Synthesized by in situ Reduction,” Mater. Sci. Eng., C 15, 175–177 (2001).

    Article  Google Scholar 

  6. A. I. Il’inskii, A. S. Terletskii, and E. V. Zozulya, “On the Structure and Strength of Rapidly Quenched Cu-Al2O3 Composites,” Fiz. Met. Metalloved. 86(6), 121–124 (1998) [Phys. Met. Metallogr. 86 (6), 611–613 (1998)].

    Google Scholar 

  7. M. F. Ashby and Y. J. M. Bréchet, “Designing Hybrid Materials,” Acta Mater. 51, 5801–5821 (2003).

    Article  CAS  Google Scholar 

  8. A. I. Il’inskii, A. S. Terletskii, and E. V. Zozulya, “Peculiarities of Deformation Strengthening of Cu + Al2O3 Vacuum Condensates,” in Abs. XV Int. Conf. “Physics of Strength and Plasticity of Materials” (Tolyatti, 2003).

  9. L. H. Qian, Q. H. Lu, W. J. Kong, and K. Lu, “Electrical Resistivity of Fully-Relaxed Grain Boundaries in Nanocrystalline Cu,” Scr. Mater. 50, 1407–1411 (2004).

    Article  CAS  Google Scholar 

  10. I. N. Kolupaev and E. V. Zozulya, “Electroconductivity of Cu-Al2O3 Composite Films Obtained by Vacuum Condensation Method,” in Proc. XII Int. Symp. “Thin Films in Electronics” (KhFTI, Kharkov, 2001), pp. 47–51.

    Google Scholar 

  11. A. A. Lukhvich, A. S. Karolik, and V. I. Sharando, Structural Dependence of Thermoelectrical Properties and Non-Destructive Control (Navuka i Tekhnika, Minsk, 1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © E.V. Zozulya, A.I. Il’inskii, I.N. Kolupaev, 2011, published in Fizika Metallov i Metallovedenie, 2011, Vol. 111, No. 2, pp. 159–161.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zozulya, E.V., Il’inskii, A.I. & Kolupaev, I.N. Structure and electrical resistance of dispersion-strengthened vacuum-deposited Cu–Al2O3 nanocomposites. Phys. Metals Metallogr. 111, 155–157 (2011). https://doi.org/10.1134/S0031918X1101025X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X1101025X

Keywords

Navigation