Skip to main content
Log in

Control of the magnetic state of arrays of ferromagnetic nanoparticles with the aid of the inhomogeneous field of a magnetic-force-microscope probe

  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The work presents a survey of the results of studies of the processes of magnetization reversal of ferromagnetic nanoparticles under the action of the field of a magnetic force microscope probe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Chappert, H. Bernas, J. Ferre, et al., “Planar Patterned Magnetic Media Obtained by Ion Irradiation,” Science 280, 1919–1922 (1998).

    Article  CAS  Google Scholar 

  2. M. Albrecht, A. Moser, C. T. Rettner, et al., “Writing of High-Density Patterned Perpendicular Media with a Conventional Longitudinal Recording Head,” Appl. Phys. Lett. 80, 3409–3411 (2002).

    Article  CAS  Google Scholar 

  3. M. H. Kryder and R. W. Gustafson, “High-Density Perpendicular Recording—Advances, Issues, and Extensibility,” J. Magn. Magn. Mater. 287, 449–458 (2005).

    Article  CAS  Google Scholar 

  4. H. J. Richter, A. Y. Dobin, O. Heinonen, et al., “Recording on Bit-Patterned Media at Densities of 1 Tb/in2 and Beyond,” IEEE Trans. Magn. 42, 2255–2260 (2006).

    Article  Google Scholar 

  5. A. Moser, O. Hellwig, D. Kercher, et al., “Off-Track Margin in Bit Patterned Media,” Appl. Phys. Lett. 91, 162502 (2007).

    Article  Google Scholar 

  6. M. Albrecht, C. T. Rettner, A. Moser, et al., “Recording Performance of High-Density Patterned Perpendicular Magnetic Media,” Appl. Phys. Lett. 81, 2875–2877 (2002).

    Article  CAS  Google Scholar 

  7. J. L. Martin, J. Nogues, K. Liu, et al., “Ordered Magnetic Nanostructures: Fabrication and Properties,” J. Magn. Magn. Mater. 256, 449–501 (2003).

    Article  CAS  Google Scholar 

  8. M. Albrecht, S. Anders, T. Thomson, et al., “Thermal Stability and Recording Properties of Sub-100 nm Patterned CoCrPt Perpendicular Media,” J. Appl. Phys. 91, 6845–6847 (2002).

    Article  CAS  Google Scholar 

  9. C. Haginoya, K. Koike, Y. Hirayama, et al., “Thermomagnetic Writing on 29 Gbit/in2 Patterned Magnetic Media,” Appl. Phys. Lett. 75, 3159–3161 (1999).

    Article  CAS  Google Scholar 

  10. R. H. Kodama, “Magnetic Nanoparticles,” J. Magn. Magn. Mater. 200, 359–372 (1999).

    Article  CAS  Google Scholar 

  11. A. M. Alekseev, V. A. Bykov, A. F. Popkov, et al., “Observation of Remanent States of Small Magnetic Particles: Micromagnetic Simulation and Experiment,” Pis’ma Zh. Eksp. Teor. Fiz. 75(6), 318–322 (2002) [JETP Lett. 75 (6),268–272 (2002)].

    Google Scholar 

  12. A. A. Fraerman, S. A. Gusev, L. A. Mazo, et al., “Rectangular Lattices of Permalloy Nanoparticles: Interplay of Single-Particle Magnetization Distribution and Interparticle Interaction,” Phys. Rev. B: Condens. Matter Mater. Phys. 65, 064424 (2002).

    Article  Google Scholar 

  13. S. A. Gusev, E. B. Kluenkov, L. A. Mazo, et al., “C60 Fullerite as a Resist for Nanolithograthy,” in Abstracts of IWFAC-97 (St. Petersburg, 1997), p. 96.

  14. M. V. Sapozhnikov, A. A. Fraerman, S. N. Vdovichev, et al., “Effect of Ferromagnetic Nanoparticles on the Transport Properties of a GaMnAs Microbridge,” Appl. Phys. Lett. 91, 062513 (2007).

    Google Scholar 

  15. Y. Martin and H. K. Wickramasinghe, “Magnetic Imaging by “Force Microscopy” with 1000 Å Resolution,” Appl. Phys. Lett. 50(20), 1455–1457 (1987).

    Article  Google Scholar 

  16. D. Rugar, H. J. Mamin, P. Guethner, et al., “Magnetic Force Microscopy: General Principles and Application to Longitudinal Recording Media,” J. Appl. Phys. 68, 1169–1183 (1990).

    Article  CAS  Google Scholar 

  17. X. Zhu, P. Grütter, V. Metlushko, et al., “Magnetic Force Microscopy Study of Electron-Beam-Patterned Soft Permalloy Particles: Technique and Magnetization Behavior,” Phys. Rev. B: Condens. Matter Mater. Phys. 66, 024423 (2002).

    Article  Google Scholar 

  18. X. Zhu, P. Grütter, V. Metlushko, et al., “Systematic Study of Magnetic Tip Induced Magnetization Reversal of E-Beam Patterned Permalloy Particles,” J. Appl. Phys. 91, 7340–7342 (2002).

    Article  CAS  Google Scholar 

  19. M. Kleiber, F. Kümmerlen, M. Löhndorf, et al., “Magnetization Switching of Submicrometer Co Dots Induced by a Magnetic Force Microscope Tip,” Phys. Rev. B: Condens. Matter Mater. Phys. 58, 5563–5567 (1998).

    Article  CAS  Google Scholar 

  20. A. A. Fraerman, B. A. Gribkov, S. A. Gusev, et al., “Observation of MFM Tip Induced Remagnetization Effects in Elliptical Ferromagnetic Nanoparticles,” Phys. Low Dimens. Struct. No. 1/2, 117–122 (2004).

  21. A. A. Fraerman, L. Belova, B. A. Gribkov, et al., “Magnetic Force Microscopy to Determine Vorticity Direction in Elliptical Co Nanoparticles,” Phys. Low-Dimens. Struct., No. 1/2, 35–40 (2004).

  22. J. Chang, A. A. Fraerman, S. H. Han, et al., “Magnetic Force Microscopy (MFM) Study of Remagnetization Effects in Patterned Ferromagnetic Nanodots,” J. Magnetics 10(2), 58–62 (2005).

    Article  Google Scholar 

  23. B. L. Gribkov, V. L. Mironov, N. I. Polushkin, et al., “Study of Processes of Local Remagnetization in Fe-Cr Nanoparticles,” Poverkhnost, No. 5, 19–21 (2006).

  24. J. Chang, V. L. Mironov, B. A. Gribkov, et al., “Magnetic State Control of Ferromagnetic Nanodots by Magnetic Force Microscopy Probe,” J. Appl. Phys. 100, 104304 (2006).

    Article  Google Scholar 

  25. V. L. Mironov and O. L. Ermolaeva, “Interaction of Magnetic Vortex with the Probe Field of a Magnetic Force Microscope,” Poverkhnost, No. 8, 37–41 (2007).

  26. V. L. Mironov, B. A. Gribkov, A. A. Fraerman, et al., “MFM Probe Control of Magnetic Vortex Chirality in Elliptical Co Nanoparticles,” J. Magn. Magn. Mater. 312, 153–157 (2007).

    Article  CAS  Google Scholar 

  27. J. Chang, H. Yi, H. C. Koo, et al., “Magnetization Reversal of Ferromagnetic Nanoparticles under Inhomogeneous Magnetic Field,” J. Magn. Magn. Mater. 309, 272–277 (2007).

    Article  CAS  Google Scholar 

  28. V. L. Mironov, B. A. Gribkov, A. A. Fraerman, et al., “Transitions between the States with Uniform and Vortex Distributions of Magnetization in Ferromagnetic Nanoparticles under the Action of an Inhomogeneous Magnetic Field,” Izv. RAN, Ser. Fiz. 71(1), 53–56 (2007) [Bull. Russ. Acad. Sci.: Phys. 71 (1), 48–51 (2007)].

    Google Scholar 

  29. V. L. Mironov, O. L. Ermolaeva, and A. A. Fraerman, “Effect of the Probe Field in a Magnetic Force Microscope on the Magnetization Distribution in Samples,” Izv. RAN, Ser. Fiz. 72(11), 1558–1561 (2008) [Bull. Russ. Acad. Sci.: Phys. 72 (11), 1475–1478 (2008)].

    CAS  Google Scholar 

  30. V. L. Mironov and A. A. Fraerman, “Interaction of a Magnetic Vortex with Non-Homogeneous Magnetic Field of MFM Probe,” in Electromagnetic, Magnetostatic, and Exchange-Interaction Vortices in Confined Magnetic Structures (Research Signpost, 2008).

  31. V. L. Mironov, B. A. Gribkov, S. N. Vdovichev, et al., “Magnetic Force Microscope Tip Induced Remagnetization of CoPt Nanodiscs with Perpendicular Anisotropy,” J. Appl. Phys. 106, 053911 (2009).

    Article  Google Scholar 

  32. S. Porthum, L. Abelmann, and C. Lodder, “Magnetic Force Microscopy of Thin Film Media for High Density Magnetic Recording,” J. Magn. Magn. Mater. 182, 238–273 (1998).

    Article  Google Scholar 

  33. P. C. D. Hobbs, D. W. Abraham, and H. K. Wickramasinghe, “Magnetic Force Microscopy with 25 nm Resolution,” Appl. Phys. Lett. 55, 2357–2359 (1989).

    Article  Google Scholar 

  34. U. Hartmann, “Analysis of Bloch Wall Fine Structures by Magnetic Force Microscopy,” Phys. Rev. B: Condens. Matter 40(10), 7421–7424 (1989).

    Article  Google Scholar 

  35. D. Rugar, H. J. Mamin, R. Erlandsson, et al., “Force Microscope Using a Fiber-Optic Displacement Sensor,” Rev. Sci. Instr. 59, 2337–2340 (1988).

    Article  CAS  Google Scholar 

  36. W. Alters, A. Schwarz, U. D. Schwarz, et al., “A Scanning Force Microscope with Atomic Resolution in Ultrahigh Vacuum and at Low Temperatures,” Rev. Sci. Instr. 69, 221–225 (1998).

    Article  Google Scholar 

  37. H. Edwards, L. Taylor, W. Duncan, et al., “Fast, High-Resolution Atomic Force Microscopy Using a Quartz Tuning Fork as Actuator and Sensor,” J. Appl. Phys. 82(3), 980–984 (1997).

    Article  CAS  Google Scholar 

  38. M. Todorovic and S. Schultz, “Magnetic Force Microscopy Using Nonoptical Piezoelectric Quartz Tuning Fork Detection Design with Applications to Magnetic Recording Studies,” J. Appl. Phys. 83(11), 6229–6231 (1998).

    Article  CAS  Google Scholar 

  39. T. R. Albrecht, S. Akamine, T. E. Carver, et al., “Microfabrication of Cantilever Styli for the Atomic Force Microscope,” J. Vac. Sci. Techn. A 8, 3386–3396 (1990).

    Article  CAS  Google Scholar 

  40. G. Meyer and N. M. Amer, “Novel Optical Approach to Atomic Force Microscopy,” Appl. Phys. Lett. 53, 1045–1047 (1988).

    Article  Google Scholar 

  41. S. Alexander, L. Hellemans, O. Marti, et al., “An Atomic-Resolution Atomic-Force Microscope Implemented Using an Optical Lever,” J. Appl. Phys. 65, 164–167 (1989).

    Article  CAS  Google Scholar 

  42. K. L. Babcock, V. B. Elings, J. Shi, et al., “Field-Dependence of Microscopic Probes in Magnetic Force Microscopy,” Appl. Phys. Lett. 69(5), 705–707 (1996).

    Article  CAS  Google Scholar 

  43. M. R. Koblischka, U. Hartmann, and T. Sulzbach, “Improvements of the Lateral Resolution of the MFM Technique,” Thin Solid Films 428, 93–97 (2003).

    Article  CAS  Google Scholar 

  44. G. N. Phillips, M. Siekman, L. Abelmann, et al., “High Resolution Magnetic Force Microscopy Using Focused Ion Beam Modified Tips,” Appl. Phys. Lett. 81 (5), 865–867 (2002).

    Google Scholar 

  45. D. Litvinov, S. Sakhrat Khizroeva, “Orientation-Sensitive Magnetic Force Microscopy for Future Probe Storage Applications,” Appl. Phys. Lett. 81(10), 1878–1880 (2002).

    Article  CAS  Google Scholar 

  46. L. Gao, L. P. Yue, T. Yokota, et al., “Focused Ion Beam Milled CoPt Magnetic Force Microscopy Tips for High Resolution Domain Images,” IEEE Trans. Magn. 40(4), 2194–2196 (2004).

    Article  CAS  Google Scholar 

  47. Z. Deng, E. Yenilmez, J. Leu, et al., “Metal-Coated Carbon Nanotube Tips for Magnetic Force Microscopy,” Appl. Phys. Lett. 85(25), 6263–6265 (2004).

    Article  CAS  Google Scholar 

  48. N. Yoshida, T. Arte, S. Akita, et al., “Improvement of MFM Tips Using Fe-Alloy-Capped Carbon Nanotubes,” Physica B 323, 149–150 (2002).

    Article  CAS  Google Scholar 

  49. H. Kuramochi, T. Uzumaki, M. Yasutake, et al., “A Magnetic Force Microscope Using CoFe-Coated Carbon Nanotube Probes,” Nanotecnology 16, 24–27 (2005).

    Article  CAS  Google Scholar 

  50. A. Winkler, T. Muhl, S. Menzel, et al., “Magnetic Force Microscopy Sensors Using Iron-Filled Carbon Nanotubes,” J. Appl. Phys. 99, 104905 (2006).

    Article  Google Scholar 

  51. T. Arie, N. Yoshida, S. Akita, et al., “Quantitative Analysis of the Magnetic Properties of a Carbon Nanotube Probe in Magnetic Force Microscopy,” J. Physics D: Appl. Phys. 34, L43–L45 (2001).

    Article  CAS  Google Scholar 

  52. T. Arie, H. Nishijima, S. Akita, et al., “Carbon-Nanotube Probe,” Sci. Techn. 18(1), 104–106 (2000).

    Article  CAS  Google Scholar 

  53. P. F. Hopkins, J. Moreland, S. S. Malhotra, et al., “Superparamagnetic Magnetic Force Microscopy Tips,” J. Appl. Phys. 79(8), 6448–6450 (1996).

    Article  CAS  Google Scholar 

  54. D. V. Ovchinnikov and A. A. Bukharaev, “Computer Simulation of Magnetic Force Microscopy Images with a Static Model of Magnetization Distribution and Dipole-Dipole Interaction,” Zh. Tekhn. Fiz. 71(8), 85–91 (2001) [Techn. Phys. 46 (8), 1014–1419 (2001)].

    Google Scholar 

  55. Th. Kebe and A. Carl, “Calibration of Magnetic Force Microscopy Tips by Using Nanoscale Current-Carrying Parallel Wires,” J. Appl. Phys. 95(3), 775–792 (2004).

    Article  CAS  Google Scholar 

  56. J. Lohau, S. Kirsch, A. Carl, et al., “Quantitative Determination of Effective Dipole and Monopole Moments of Magnetic Force Microscopy Tips,” J. Appl. Phys. 86(6), 3410–3417 (1999).

    Article  CAS  Google Scholar 

  57. A. V. Goryachev and A. F. Popkov, “Calibration Parameters for the Probing Tip of a Magnetic Force Microscope in the Field of a Test Current Loop,” Zh. Tekhn. Fiz. 76(9), 115–120 (2006) [Techn. Phys. 51 (9), 1223–1228 (2006)].

    Google Scholar 

  58. A. V. Purii, A. S. Baturin, E. P. Sheshin, and P. V. Sherstnev, “Quantitative Calibration of Cantilever of a Magnetic Force Microscope Using Wire with a Current,” Nano-Mikrosistem. Tekh., No. 7, 70–74 (2007).

  59. V. L. Mironov and O. L. Ermolaeva, “Optimization of Parameters of the Probe of a Magnetic Force Microscope for Studying Arrays of Supersmall Ferromagnetic Nanoparticles: Analysis of the Amplitude of Phase Contrast,” Nano-Mikrosistem. Tekh., No. 6, 12–16 (2009).

  60. U. Hartmann, “Point Dipole Approximation in Magnetic Force Microscopy,” Phys. Lett. A 137, 475–478 (1989).

    Article  Google Scholar 

  61. J. M. Garcia-Martin, A. Thiaville, J. Miltat, et al., “Imaging Magnetic Vortices by Magnetic Force Microscopy: Experiments and Modeling,” J. Phys. D: Appl. Phys. 37, 965–972 (2004).

    Article  CAS  Google Scholar 

  62. T. Pokhil, D. Song, J. Nowak, “Spin Vortex States and Hysteretic Properties of Submicron Size NiFe Elements,” J. Appl. Phys. 87, 6319–6321 (2000).

    Article  CAS  Google Scholar 

  63. M. Demand, M. Hehn, K. Ounadjela, and R. L. Stamps, “Magnetic Domain Structures in Arrays of Submicron Co Dots Studied with Magnetic Force Microscopy,” J. Appl. Phys. 87, 5111–5113 (2000).

    Article  CAS  Google Scholar 

  64. W. F. Brown, Micromagnetics (Wiley-Interscience, New York, 1963; Nauka, Moscow, 1979).

    Google Scholar 

  65. K. Shigeto, T. Okuno, K. Mibu, et al., “Magnetic Force Microscopy Observation of Antivortex Core with Perpendicular Magnetization in Patterned Thin Film of Permalloy,” Appl. Phys. Lett. 80, 4190–4193 (2002).

    Article  CAS  Google Scholar 

  66. T. Okuno, K. Mibu, and T. Shinjo, “Two Types of Magnetic Vortex Cores in Elliptical Permalloy Dots,” J. Appl. Phys. 95, 3612–3617 (2004).

    Article  CAS  Google Scholar 

  67. P. E. Roy, J. H. Lee, T. Trypiniotis, et al., “Antivortex Domain Walls Observed in Permalloy Rings Via Magnetic Force Microscopy,” Phys. Rev. B: Condens. Matter Mater. Phys. 79, 060407 (2007).

    Article  Google Scholar 

  68. B. A. Gribkov, V. L. Mironov, N. I. Polushkin, et al., “Study of the Processes of Local Remagnetization in Fe-Cr Nanoparticles,” Poverkhnost, No. 5, 19–21 (2006).

  69. Yu. K. Verevkin, V. K. Petryakov, and N. I. Polushkin, “Characteristics of YBaCuO Successive Chains of Josephson Transformations on Bicrystal Substrate,” Pis’ma Zh. Tekh. Fiz. 24, 12–13 (1998).

    Google Scholar 

  70. N. I. Polushkin, K. V. Rao, J. Wittborn, et al., “Visualization of Small Magnetic Entities by Nonmagnetic Probes of Atomic Force Microscope,” J. Magn. Magn. Mater. 258–259, 29–31 (2003).

    Article  Google Scholar 

  71. S. N. Vdovichev, A. Yu. Klimov, Yu. N. Nozdrin, and V. V. Rogov, “Edge-Type Josephson Junctions with Silicon Nitride Spacer” Pis’ma Zh. Tekh. Fiz. 30(5), 42–56 (2004) [Tech. Phys. Lett. 30 (5), 374–376 (2004)].

    Google Scholar 

  72. S. N. Vdovichev, B. A. Gribkov, S. A. Gusev, et al., “Properties of Josephson Junctions in the Inhomogeneous Magnetic Field of a System of Ferromagnetic Particles,” Pis’ma Zh.Eksp. Teor. Fiz. 80(10), 758–762 (2004) [JETP Lett. 80 (10), 651–654 (2004)].

    Google Scholar 

  73. A. Y. Aladyshkin, A. A. Fraerman, S. A. Gusev, et al., “Influence of Ferromagnetic Nanoparticles on the Critical Current of Josephson Junction,” J. Magn. Magn. Mater. 258–259, 406–408 (2003).

    Article  Google Scholar 

  74. J. Suh, J. Chang, E. K. Kim, et al., “Magnetotransport Properties of GaMnAs with Ferromagnetic Nanodots,” Phys. Status Solidi A 205(5), 1043–1046 (2007).

    Google Scholar 

  75. T. Okuno, K. Shigeto, T. Ono, et al., “MFM Study of Magnetic Vortex Cores in Circular Permalloy Dots: Behavior in External Field,” J. Magn. Magn. Mater. 240, 1–6 (2002).

    Article  CAS  Google Scholar 

  76. J. K. Ha, R. Hertel, and J. Kirschner, “Micromagnetic Study of Magnetic Configurations in Submicron Permalloy Disks,” Phys. Rev. B: Condens. Matter Mater. Phys. 67, 224432 (2003).

    Article  Google Scholar 

  77. K. L. Metlov and Y. Lee, “Map of States for Thin Circular Nanocylinders,” Appl. Phys. Lett. 92, 112506 (2008).

    Article  Google Scholar 

  78. A. Fernandez, M. R. Gibbons, M. A. Wall, et al., “Magnetic Domain Structure and Magnetization Reversal in Submicron-Scale Co Dots,” J. Magn. Magn. Mater. 190, 71–80 (1998).

    Article  CAS  Google Scholar 

  79. A. Fernandez and C. J. Cerjan, “Nucleation and Annihilation of Magnetic Vortices in Submicron-Scale Co Dots,” J. Appl. Phys. 87, 1395–1401 (2000).

    Article  CAS  Google Scholar 

  80. C. Chappert, H. Bernas, and J. V. Ferre, et al., “Irradiation Planar Patterned Magnetic Media Obtained by Ion Irradiation,” Science 280, 1919 (1998).

    Article  CAS  Google Scholar 

  81. J. X. Shen, R. D. Kirby, K. Wierman, et al., “The Fluctuation Field of Ferromagnetic Materials,” J. Appl. Phys. 73, 6418 (1993).

    Article  CAS  Google Scholar 

  82. A. Aktag, S. Michalski, L. Yue, et al., “Formation of an Anisotropy Lattice in Co/Pt Multilayers by Direct Laser Interference Patterning,” J. Appl. Phys. 99, 093901 (2006).

    Article  Google Scholar 

  83. E. C. Stoner and E. P. Wohlfarth, “A Mechanism of Magnetic Hysteresis in Heterogeneous Alloys,” Philos. Trans. Royal Soc. (London), A 240, 599–642 (1948).

    Article  Google Scholar 

  84. S. Okamoto, T. Kato, N. Kikuchi, et al., “Energy Barrier and Reversal Mechanism in Co/Pt Multilayer Nanodot,” J. Appl. Phys. 103, 07C501 (2008).

    Article  Google Scholar 

  85. G. Ni, T. Thomson, S. T. Rettner, et al., “Magnetization Reversal in Co/Pd Nanostructures and Films,” J. Appl. Phys. 97, 10J702 (2005).

    Article  Google Scholar 

  86. N. Kikuchi, S. Okamoto, O. Kitakami, et al., “Sensitive Detection of Irreversible Switching in a Single FePt Nanosized Dot,” Appl. Phys. Lett. 82, 4313–4315 (2003).

    Article  CAS  Google Scholar 

  87. K. Mitsuzuka, N. Kikuchi, T. Shimatsu, et al., “Switching Field and Thermal Stability of CoPt/Ru Dot Arrays with Various Thicknesses,” IEEE Trans. Magn. 43, 2160–2162 (2007).

    Article  CAS  Google Scholar 

  88. V. L. Mironov, O. L. Ermolaeva, S. A. Gusev, et al., “Antivortex State in Crosslike Nanomagnets,” Phys. Rev. B, 81, 094436 (2010).

    Article  Google Scholar 

  89. S. Gliga, M. Yan, R. Hertel, et al., “Ultrafast Dynamics of a Magnetic Antivortex: Micromagnetic Simulations,” Phys. Rev. B: Condens. Matter Mater. Phys. 77, 060 404 (2008).

    Google Scholar 

  90. S. Gliga, R. Hertel, and C. M. Schneider, “Switching a Magnetic Antivortex Core with Ultrashort Field Pulses,” J. Appl. Phys. 103, 07B115 (2008).

    Article  Google Scholar 

  91. H. Wang and C. E. Campbell, “Spin Dynamics of a Magnetic Antivortex: Micromagnetic Simulations,” Phys. Rev. B: Condens. Matter Mater. Phys. 76, 220407 (2007).

    Article  Google Scholar 

  92. A. Drews, B. Krüger, G. Meier, et al., “Current- and Field-Driven Magnetic Antivortices for Nonvolatile Data Storage,” Appl. Phys. Lett. 94, 062504 (2009).

    Article  Google Scholar 

  93. A. Neubauer, C. Pfleiderer, B. Binz, et al., “Topological Hall Effect in the A Phase of MnSi,” Phys. Rev. Lett. 102, 186602 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Mironov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mironov, V.L., Fraerman, A.A., Gribkov, B.A. et al. Control of the magnetic state of arrays of ferromagnetic nanoparticles with the aid of the inhomogeneous field of a magnetic-force-microscope probe. Phys. Metals Metallogr. 110, 708–734 (2010). https://doi.org/10.1134/S0031918X10130053

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X10130053

Keywords

Navigation