The Physics of Metals and Metallography

, Volume 109, Issue 2, pp 153–161 | Cite as

Formation of nickel carbide in the course of deformation treatment of Ni-C mixtures

  • V. K. Portnoi
  • A. V. Leonov
  • S. N. Mudretsova
  • S. A. Fedotov
Structure, Phase Transformations, and Diffusion

Abstract

Nonequilibrium Ni(C) solid solutions supersaturated with carbon to 10.2 at % were synthesized by mechanochemical method. An analysis of diffraction patterns showed that the formation of Ni(C) solid solutions is accompanied by an increase in the probability of appearance of deformation stacking faults. When the carbon content in the initial Ni-C mixtures is above 20 at %, the fcc Ni(C) solid solution resulting from the mechanical synthesis transforms into the metastable Ni3C nickel carbide with a hexagonal structure. The thermal stability of nonequilibrium Ni(C) solid solutions was determined. The solid solutions formed from the mixtures with carbon contents from 7 to 15 at % undergo partial decomposition accompanied by the carbide precipitation upon heating to 300°C. The decomposition of the metastable Ni3C carbide starts at a temperature Ts ~ 464.8°C; the thermal effect is —ΔH=10–13 kJ/mol. The effective radius of carbon atoms in the Ni(C) solid solutions was determined; it is equal to Rceff=0.061 nm.

Key words

mechanochemical synthesis mechanical alloying nickel carbide stacking faults 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. P. Struis, D. Bachelin, C. Ludwig, and A. Wokaun, “Studying the Formation of Ni3C from CO and Metallic Ni at T = 265°C in situ Using Ni K-Edge X-ray Absorption Spectroscopy,” J. Phys. Chem. C 113(6), 2443–2451 (2009).CrossRefGoogle Scholar
  2. 2.
    O. M. Gur’yanova, E. F. Kukovitskii, S. G. L’vov, et al., “Electron Diffraction Investigation of Catalytic Particles at the Tips of Carbon Nanotubes,” Fiz. Tverd. Tela 44(3), 455–456 (2002) [Phys. Sol. St. 44 (3), 473–475 (2002)].Google Scholar
  3. 3.
    C. Borchers, P. Ricardo, and C. Michaelsen, “Interfacial Wetting and Percolation Threshold in Ultrathin Ni/C Multilayer Films,” Philos. Mag. A 80(7), 1669–1679 (2000).CrossRefADSGoogle Scholar
  4. 4.
    Z. Krawietr, B. Wehner, T. Sebald, and R. Dietsch, “Investigation of Thermal Aging of Ni/C-Multilayers by X-ray Methods,” Mater. Sci. Forum 166–169, 1247–1253 (1994).Google Scholar
  5. 5.
    S. Sinharo and L. L. Levenson, “Formation and Decomposition of Nickel Carbide in Evaporated Nickel Films on Graphite,” Thin Solid Films 53(1), 31–36 (1978).CrossRefADSGoogle Scholar
  6. 6.
    L. Diandra, X. Q. Leslie-Pelecky, S. H. Zhang, et al., “Structural Properties of Chemically Synthesized Nanostructured Ni and Ni: Ni3C Nanocomposites,” Chem. Mater. 10, 164–171 (1998).CrossRefGoogle Scholar
  7. 7.
    S. I. Ryabtsev, V. F. Bashev, A. I. Belkin, and A. S. Ryabtsev, “Structure and Properties of Ion-Plasma Deposited Ni-C Films in a Metastable State,” Fiz. Met. Metalloved. 102(3), 326–329 (2006) [Phys. Met. Metallogr. 102 (3), 305–309 (2006)].Google Scholar
  8. 8.
    T. Tanaka, K. N. Ishihara, and P. Shingu, “The Formation of Metastable Phases of Ni-C and Co-C Systems by Mechanical Alloying,” Metall. Trans. A 23, 2431–2435 (1992).CrossRefGoogle Scholar
  9. 9.
    Phase Diagrams of Binary Metal Systems: A Handbook Ed. by N. P. Lyakishev (Mashinostroenie, Moscow, 1997) [in Russian].Google Scholar
  10. 10.
    T. P. Ershova, D. S. Kamenetskaya, and L. D. Il’ina, “Calculation of a T-P-N Phase Diagram of the Ni-C System up to 100 kbar,” Izv. Akad. Nauk SSSR, Met., No. 4, 201–210 (1981).Google Scholar
  11. 11.
    S. R. Nishitani, K. N. Ishihara, R. O. Suzuki, and P. H. Shingu, “Metastable Solid Solubility Limit of Carbon in the Ni-C System,” J. Mater. Sci. Lett. 4, 872–875 (1985).CrossRefGoogle Scholar
  12. 12.
    S. Nagakura, “Study of Metallic Carbides by Electron Diffraction. Part II. Crystal Structure Analysis of Nickel Carbide,” J. Phys. Soc. Jpn. 13, 1005–1014 (1958).CrossRefADSGoogle Scholar
  13. 13.
    H. J. Goldschmidt Interstitial Alloys (Butterworths, London, 1967; Mir, Moscow, 1971).Google Scholar
  14. 14.
    K. Tokumitsu, K. Majima, and R. Yamamoto, “Transformation of Fe-C System to High Pressured Hexagonal Structures by Mechanical Alloying of Elemental Powders,” Solid State Ionics 172, 211–214 (2004).CrossRefGoogle Scholar
  15. 15.
    K. Tokumitsu, “Synthesis of Metastable Fe3C, Co3C and Ni3C by Mechanical Alloying Method,” Mater. Sci. Forum 235–238, 127–132 (1997).CrossRefGoogle Scholar
  16. 16.
    S. S. Gorelik, Yu. A. Skakov, and L. N. Rastorguev, X-ray Diffraction and Electron-Microscopic Analysis (MISIS, Moscow, 2002) [in Russian].Google Scholar
  17. 17.
    E. V. Shelehov and T. A. Sviridova, “Calculation of Diffraction Patterns of Close-Packed Polytypes with Random Shearing Stacking Faults,” Mater. Sci. Forum 321–324, 97–102 (2000).CrossRefGoogle Scholar
  18. 18.
    JCPDS (Joint Committee on Powder Diffraction Standards) 4-0850.Google Scholar
  19. 19.
    R. Ruhl and M. Cohen, “Metastable Extensions of Carbon Solubility in Nickel and Cobalt,” Scr. Metall. 1, 73 (1967).CrossRefGoogle Scholar
  20. 20.
    C. Ruth and M. Turpin, “Determination of Eutectic Composition of Binary Alloys of Nickel-Carbon and Cobalt-Carbon,” C. R. Acad. Sci. 264, 928–929 (1967).Google Scholar
  21. 21.
    Ya. D. Vishnyakov, Stacking Faults in Crystal Structures (Metallurgiya, Moscow, 1970) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • V. K. Portnoi
    • 1
  • A. V. Leonov
    • 1
  • S. N. Mudretsova
    • 1
  • S. A. Fedotov
    • 1
  1. 1.Chemical DepartmentMoscow State UniversityMoscowRussia

Personalised recommendations