Skip to main content
Log in

Structure and properties of precipitation-hardening ceramic Ti-Zr-C and Ti-Ta-C materials

  • Strength and Plasticity
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Precipitation hardening alloys of the Ti-Ta-C and Ti-Zr-C systems produced by self-propagating high-temperature synthesis (SHS) have been studied. Optimum compositions of the alloys and heat-treatment conditions, under which the decomposition of supersaturated solid solution accompanied by the precipitation of fine particles both inside carbide grains and at their boundaries occurs, have been determined. The precipitation hardening ceramic materials exhibit high hardness (∼15–23 GPa) and heat resistance (the mass increase of the Ti-9.4% Ta-10.5% C alloy is less than 8 g/m2 during a 50-h exposure in air at 800°C) and can be recommended for the application as materials for deposited multifunctional coatings, high-temperature contacts, evaporation crucibles, and abrasion-resistive tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. A. Levashov, D. V. Shtansky, A. L. Lobov, and I. P. Borovinskaya, “Structure and Properties of a New Disperse-Hardening Alloy Based on Titanium Carbide Obtained by the SHS Method,” Int. J. SHS 2(2), 165 (1994).

    Google Scholar 

  2. E. A. Levashov, D. V. Shtanskii, A. L. Lobov, et al., “Structure and Properties of New TiC-Based Precipitation-Hardening Alloy Manufactured by Self-Propagating High-Temperature Synthesis,” Fiz. Met. Metalloved. 77(2), 118–124 (1994) [Phys. Met. Metallogr. 77 (2), 179–184 (1994)].

    CAS  Google Scholar 

  3. J. C. LaSalvia, D. K. Kim, and M. A. Meyers, “Effect of Mo on Microstructure and Mechanical Properties of TiC-Ni Based Cermets Produced by Combustion Synthesis-Impact Forging Technique,” Mater. Sci. Eng, A 206(1), 71–80 (1996).

    Article  Google Scholar 

  4. E. A. Levashov, B. V. Vyushkov, K. N. Egorychev, and I. P. Borovinskaya, “Technological Aspects of Manufacturing New Synthetic Titanium and Molybdenum Carbide-Based Tool Materials,” Int. J. SHS 5(3), 293 (1996).

    CAS  Google Scholar 

  5. E. A. Levashov, D. V. Shtanskii, B. V. V’yushkov, and E. V. Shtanskaya, “Formation of the Structure of Titanium-Carbide-Based Alloys TiC-Mo-Ni and TiC-Mo Systems during Self-Propagating High-Temperature Compacting,” Fiz. Met. Metalloved. 78(4) 147–153 (1994) [Phys. Met. Metallogr. 78 (4) 454–459 (1994)].

    CAS  Google Scholar 

  6. E. A. Levashov and V. V. Kurbatkina, “Regularities of Composite Materials with Micrograded Grain Structure Formation,” in Functionally Graded Materials VIII(FGM 2004), Ed. by Omer Van der Biest, M. Gasik, and J. Vleugels (Leuven, Belgium, 2004); Mater. Sci. Forum, 492–493, 615–620 (2004).

    Google Scholar 

  7. V. V. Kurbatkina, E. A. Levashov, and D. A. Podgornyi, “Composite Materials with a Micrograded Structure of Grains,” Tsvetn. Metall., No. 2, 61–64 (2006).

  8. A. I. Gusev, Nonstoichiometry, Disorder, Short-Range and. Long-Range Order in Solids (Moscow: Izd-vo Fizmatlit,. 2007) Nonstoichiometry, Disorder, Short-Range and Long-Range Order in Solids (Nauka-Fizmatlit, Moscow, 2007) [in Russian].

    Google Scholar 

  9. E. K. Storms, The Refractory Carbides (Academic, New York, 1967; Atomizdat, Moscow, 1970).

    Google Scholar 

  10. S. S. Kiparisov, Yu. V. Levinskii, and V. M. Petrov, Titanium Carbide: Production, Properties, and Applications (Metallurgiya, Moscow, 1989) [in Russian].

    Google Scholar 

  11. E. A. Levashov, A. S. Rogachev, V. I. Yukhvid, and I. P. Borovinskaya, Physico-Chemical and Technologic Basis of Self-Propagating High-Temperature Synthesis (Binom, Moscow, 1999) [in Russian].

    Google Scholar 

  12. K. A. Babayan, V. P. Kobyakov, L. B. Mashkinov, and I. D. Chashechkin, “Heat-Release Measurement in “Gasless” Combustion of a Titanium-Carbon Mixture in a Nonhermetic Shell,” Combustion, Explosion, and Shock Wave 32(1), 41–44 (1996).

    Article  Google Scholar 

  13. S. S. Gorelik, Yu. A. Skakov, and L. N. Rastorguev, X-ray and Electron-Optical Analysis (MISiS, Moscow, 1999) [in Russian].

    Google Scholar 

  14. GOST 9450-67 or E-384-89, Method of Measuring Microhardness of Materials (ASTM standard).

  15. V. I. Tumanov, A. I. Brokhin, E. I. Timoshenko, et al., “On the Method of Measurement of Solid Alloy Hardness,” in Solid Alloys, Scientific Works of VNIITS (Metallurgiya, Moscow, 1973), No. 12, pp. 98–103.

    Google Scholar 

  16. G. V. Samsonov, G. Sh. Upadkhaya, and V. S. Neshpor, Physical Metallurgy of Carbides (Naukova Dumka, Kiev, 1974) [in Russian].

    Google Scholar 

  17. W. B. Pearson, Handbook of Lattice Spacings and Structures of Metal Alloys (Pergamon, New York, 1967).

    Google Scholar 

  18. E. A. Levashov, V. V. Kurbatkina, A. S. Rogachev, et al., “Peculiarities of Burning and Structure Formation in Ti-Ta-C System,” Izv.Vyssh. Uchebn. Zaved., Poroshk. Metall. Funkt. Pokr., No. 2, 25–35 (2008).

  19. E. A. Levashov, A. S. Rogachev, Yu. K. Epishko, and N. A. Kochetov, “Self-Propagating High-Temperature Synthesis of Target Cathodes in Ti-Ta-C-Ca3(PO4)2 for Ion-Plasma Deposition of Multifunctional Biocompatible Nanostructural Coatings,” Izv.Vyssh. Uchebn. Zaved., Poroshk. Metall. Funk. Pokr., No. 1, 14–26 (2007).

  20. O. Kubaschewski and B. E. Hopkins, Oxidation of Metals and Alloys (Butterworths, London, 1962; Mir, Moscow, 1969).

    Google Scholar 

  21. R. F. Voitovich and E. A. Pugach, Oxidation of Refractory Compounds: A Handbook (Metallurgiya, Moscow, 1978) [in Russian].

    Google Scholar 

  22. G. V. Samsonov and A. L. Borisova, et al., Physicochemical Properties of Oxides: A Handbook (Metallurgiya, Moscow, 1978) [in Russian].

    Google Scholar 

  23. S. A. Aivazyan, I. S. Enyukov, and L. D. Meshalkin, The Applied Statistics. Dependency Analysis: A Handbook (Finansy i Statistika, Moscow, 1985) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © E.A. Levashov, V.V. Kurbatkina, A.A. Zaitsev, S.I. Rupasov, E.I. Patsera, A.A. Chernyshev, Ya.V. Zubavichus, A.A. Veligzhanin, 2010, published in Fizika Metallov i Metallovedenie, 2010, Vol. 109, No. 1, pp. 102–112.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levashov, E.A., Kurbatkina, V.V., Zaitsev, A.A. et al. Structure and properties of precipitation-hardening ceramic Ti-Zr-C and Ti-Ta-C materials. Phys. Metals Metallogr. 109, 95–105 (2010). https://doi.org/10.1134/S0031918X10010102

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X10010102

Key words

Navigation