Skip to main content
Log in

Fine structure of martensitic phases in the Cu-24% Ga alloy

  • Structure, Phase Transformations, and Diffusion
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The transformation kinetics and the morphology of structures formed in the Cu-24 at % Ga alloy at cooling rates of 1 to 4 × 105 K/s have been studied. At low cooling rates, a massive transformation takes place in the Cu-24 at % Ga alloy; upon rapid quenching, this massive transformation can be replaced by the martensitic reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. V. Kurdyumov, “Diffusionless (Martensitic) Transformations in Alloys,” in Problems of Metallurgy and Physics of Metals (Metallurgizdat, Moscow, 1949), pp. 139–160 [in Russian].

    Google Scholar 

  2. H. Warlimont and L. Delaey, Martensitic Transformations in Copper-, Silver-, and Gold-Based Alloys (Pergamon, Oxford, 1974; Nauka, Moscow, 1980).

    Google Scholar 

  3. T. B. Massalski, “Massive Transformations,” in Phase Transformations (ASM, Metals Park, Ohio, 1970), pp. 433–484.

    Google Scholar 

  4. D. A. Mirzaev, M. M. Shteinberg, T. I. Ponomareva, and V. M. Schastlivtsev, “Effect of Cooling Rate on the Martensitic Point Position,” Fiz. Met. Metalloved. 47(1), 125–135 (1979).

    CAS  Google Scholar 

  5. D. A. Mirzaev and V. G. Ul’yanov, “Effect of Rapid Cooling on Polymorphic Transformations in Pure Metals,” Izv. Akad. Nauk SSSR, Met., No. 3, 103–109 (1982).

    Google Scholar 

  6. M. Hansen and K. Anderko, Constitution of Binary Alloys (McGraw-Hill, New York, 1958; Metallurgizdat, Moscow, 1962).

    Google Scholar 

  7. J. E. Kittl and T. B. Massalski, “A Cinematographic Study of the Massive Transformation in Cu-Ga Alloys,” Acta Metall. 15, 161–180 (1967).

    Article  CAS  Google Scholar 

  8. J. E. Kittl and C. Rodrigues, “The Massive and Martensitic Transformation Temperatures in Cu-Ga Alloys,” Acta Metall. 17, 925–928 (1969).

    Article  CAS  Google Scholar 

  9. J. C. Caretti, H. R. Bertorello, and J. E. Kittl, “The Migration Kinetics of the β → ξm Transformation Interface in Cu-23.7 at. % Ga Alloys,” Acta Metall. 30(4), 813–820 (1982).

    Article  CAS  Google Scholar 

  10. B. E. Warren, “X-ray Study of Deformed Metals,” in Progress in Metal Physics, Ed. by B. Chalmers and R. King (Pergamon, London, 1959; Metallurgizdat, Moscow, 1963).

    Google Scholar 

  11. S. Sen and S. P. Gupta, “An X-ray Diffraction Profile Analysis,” J. Vac. Sci. Technol. 16(1), 42–53 (1979).

    Article  CAS  MathSciNet  ADS  Google Scholar 

  12. K. H. G. Ashbee and L. F. Vassamillet, “Stacking Fault Energies of the Structurally Related Cu-Ga α and ξ Phases,” Acta Metall. 15, 481–484 (1967).

    Article  CAS  Google Scholar 

  13. J. P. Hirth and J. Lothe, Theory of Dislocations (McGraw-Hill, New York, 1968; Atomizdat, Moscow, 1972).

    Google Scholar 

  14. J. Vos, L. Delaey, and E. Aernoudt, “Theoretical Analysis and Physical Transformation Model for a Self-Accommodating Group of 9R Martensitic Variants,” Z. Metallkd. 69(8), 511–517 (1978).

    Google Scholar 

  15. L. Delaey and H. Warlimont, “Die Diffusionslosen Umwandlungen der B Phase in Cu-Zn-Ga-Legierungen,” Z. Metallkd. 56(7), 437–446 (1965).

    CAS  Google Scholar 

  16. T. Saburi and C. M. Wayman, “Massive and Martensitic Transformations in β Cu-Ga Alloys,” Trans. AIME 233(7), 1373–1382 (1965).

    CAS  Google Scholar 

  17. S. V. Rushchits and D. A. Mirzaev, “Planar Defects in Martensitic Close-Packed Structures with Orthorhombic and Monoclinic Distortions: I. Theory of Diffraction,” Fiz. Met. Metalloved. 99(6), 19–29 (2005) [Phys. Met. Metallogr. 99 (6), 567–577 (2005)].

    CAS  Google Scholar 

  18. S. V. Rushchits and D. A. Mirzaev, “Planar Defects in Martensitic Close-Packed Structures with Orthorhombic and Monoclinic Distortions: II. P1 and P2 Martensite of Copper Alloys,” Fiz. Met. Metalloved. 99(6), 30–41 (2005) [Phys. Met. Metallogr. 99 (6), 578–589 (2005)].

    CAS  Google Scholar 

  19. S. Kajiwara, “Theoretical Analysis of the Crystallography of the Martensitic Transformation of BCC to 9R Close-Packed Structure,” Trans. Jpn. Inst. Metals, 17, 435–446 (1976).

    CAS  Google Scholar 

  20. Phase Diagrams of Binary Metal Systems: A Handbook, Ed. by N. P. Lyakishev (Mashinostroenie, Moscow, 1997) [in Russian].

    Google Scholar 

  21. A. G. Khachaturyan, S. M. Shapiro, and S. Semenovskaya, “Adaptive Phase Formation in Martensitic Transformation,” Phys. Rev. B: 43(13), 10832–10843 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © D.A. Mirzaev, V.M. Schastlivtsev, I.L. Yakovleva, S.V. Rushchits, Yu.V. Khlebnikova, 2010, published in Fizika Metallov i Metallovedenie, 2010, Vol. 109, No. 1, pp. 93–101.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mirzaev, D.A., Schastlivtsev, V.M., Yakovleva, I.L. et al. Fine structure of martensitic phases in the Cu-24% Ga alloy. Phys. Metals Metallogr. 109, 86–94 (2010). https://doi.org/10.1134/S0031918X10010096

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X10010096

Key words

Navigation