Skip to main content
Log in

Nature of heavy-atom disordering in the YBa2Cu3O6.8 (1.5 at % Ce) single crystal: X-ray photoelectron spectroscopy

  • Structure, Phase Transformations, and Diffusion
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Photoelectron spectroscopy was used to study nonstoichiometric 123 single crystals in the initial state and after annealing at 200°C in different atmospheres (vacuum, argon, and air). The main cause for the disordering of heavy atoms (Y and Ba), which occurs during annealing in an argon atmosphere and air, was determined by a comparative analysis of the structure and spectra. The disorder is caused by the OH group that penetrates into the lattice of the compound through oxygen-vacancy chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Khachaturyan, S. V. Semenovskaya, and J. W. Morris, “Phase Diagram of the Superconducting Oxide YBa2Cu3O6 + δ,” Phys. Rev. B: Condens. Matter 37(4), 2243–2245 (1988).

    CAS  ADS  Google Scholar 

  2. Y. Hariharan, M. P. Janawadkar, V. Sankara Sastry, and T. S. Radhakrishnan, “Oxygen Ordering and Superconductivity in YBa2Cu3O7 − x ,” Pramana-J. Phys. 31(1), 59–65 (1988).

    Article  ADS  Google Scholar 

  3. E. I. Kuznetsova, Yu. V. Blinova, S. V. Sudareva, et al., “X-ray Diffraction Study of Spinodal Decomposition of a Nonstoichiometric Y-Ba-Cu-O Compound,” Fiz. Met. Metalloved. 95(1), 71–76 (2003) [Phys. Met. Metallogr. 95(1), 65–70 (2003)].

    CAS  Google Scholar 

  4. S. V. Sudareva, E. I. Kuznetsova, T. P. Krinitsina, et al., “Modulated Structures in Non-Stoichiometric YBa2Cu3O7 − δ Compounds,” Physica A 331, 263–273 (2000).

    CAS  Google Scholar 

  5. Yu. V. Blinova, S. G. Titova, S. V. Sudareva, and E. P. Romanov, “Mechanism of Thermal Decomposition of the Nonstoichiometric YBa2Cu3O6.8 Compound,” Fiz. Tverd. Tela, No. 6 (2009) [Phys. Solid State 51(6), 1099–1105 (2009)].

  6. S. V. Sudareva, E. P. Romanov, T. P. Krinitsina, et al., “Fine Structure and the Mechanism of the Low-Temperature Decomposition of the Nonstoichiometric Compounds YBa2Cu3O6.8 and YBa2Cu3O6.8 Doped with Ce,” Fiz. Met. Metalloved. 106(4), 1–10 (2008) [Phys. Met. Metallogr. 106(4), 364–373 (2008)].

    Google Scholar 

  7. I. B. Bobylev, N. A. Zyuzeva, S. V. Sudareva, and E. P. Romanov, “Effect of the Oxygen Partial Pressure on the Kinetics of Decomposition of the Ba2YCu3O7 − δ Phase at Temperatures < 400°C,” Fiz. Met. Metalloved. 103(4), 420–425 (2007) [Phys. Met. Metallogr. 103 (4), 401–406 (2007)].

    CAS  Google Scholar 

  8. O. D. Terbova, E. N. Kurkin, A. A. Budanov, and V. V. Ganin, “Chemical Degradation of YBa2Cu3O7 − δ at Carbon Influence,” Sverkhprovodimost’: Fiz., Khim., Tekh. 4(11), 2242–2245 (1991).

    Google Scholar 

  9. T. E. Os’kina, Yu. D. Tret’yakov, and E. A. Soldatov, “Kinetic Peculiarities of Initial Stage Interaction between YBa2Cu3O7 − δ with the Water Vapors and Carbon Dioxide,” Sverkhprovodimost’: Fiz., Khim., Tekh. 4(5), 1032–1039 (1991).

    Google Scholar 

  10. N. M. Plakida, High-Temperature Superconductors (Mezhdunarodnaya programma obrazovaniya, Moscow, 1996) [in Russian].

    Google Scholar 

  11. A. P. Dementjev and D. Yu. Shalayev, “CuLVV Spectrum Correlation with Cu 3d Electron Structure,” Physica Scr. 41, 180–183 (1992).

    Article  Google Scholar 

  12. C. V. Deimling, W. H. Schreiner, A. R. Jurelo, and P. N. Lisboa-Filho, “Surface Electronic Structure and Chemical Bounding of ReBa2Cu3Oy (Re = Y, Pr, Gd, Eu, Er and Sm),” Revista Brasil. Aplic. Vacuo 23(2), 73 (2004).

    CAS  Google Scholar 

  13. V. I. Nefedov, X-ray Electron Spectroscopy of Chemical Compounds: A Handbook (Khimiya, Moscow, 1984) [in Russian].

    Google Scholar 

  14. S. Hufner, Photoelectron Spectrocopy. Principles and Applications (Springer, Berlin, 1995).

    Google Scholar 

  15. G. Frank, Ch. Ziegler, and W. Gopel, “Surface Composition of Clean, Epitaxial Thin Films of YBa2Cu3O7 − δ from Quantitative XPS Analysis,” Phys. Rev. B: Condens. Matter 43, 2828–2834 (1991).

    CAS  ADS  Google Scholar 

  16. S. Marihel, I. Monot, J. Provost, and G. Desgardin, “Effect of SnO2 and CeO2 Doping on the Microstructure and Superconducting Properties of Melt Textured Zone of YBa2Cu3O7 − δ Compound,” Supercond. Sci. Technol., 11, 563–572 (1998).

    Article  ADS  Google Scholar 

  17. Yu. S. Gokhfel’d, M. I. Petrov, D. A. Balaev, et al., “Pinning in YBa2Cu3O7 Compound Doped by Cerium,” in Proc. 2nd Int. Conf. “Fundamental Problems of High-Temperature Superconductivity FPS-06” (Zvenigorod, 2006), pp. 243–244.

  18. S. H. Lee and Y. Choi, “Effect of Oxide Dopants on the Superconducting Properties of YBCO Superconductor,” Physica B 404(5–7), 734–736 (2009).

    Article  CAS  ADS  Google Scholar 

  19. X. D. Wu, A. Inam, M. S. Hegde, et al., “Crystalline Perfection of As-Deposited High-Tc Superconducting Thin-Film Surfaces: Ion Channeling and X-ray Photoelectron Spectroscopy Study,” Phys. Rev. B: Condens. Matter 38, 9307–9310 (1988).

    CAS  ADS  Google Scholar 

  20. Y. Fukuda, M. Nagoshi, T. Suzuki, et al., “Chemical States of Ba in YBa2Cu3O7 − δ Studied by X-ray Photoelectron Spectroscopy,” Phys. Rev. B: Condens. Matter 39, 11494–11497 (1989).

    CAS  ADS  Google Scholar 

  21. A. Gauzzi, H. J. Mathieu, J. H. James, and B. Kellett, “AES, XPS and SIMS Characterization of YBa2Cu3O7 − δ Superconducting High Tc Thin Films,” Vacuum 41, 870 (1990).

    Article  CAS  Google Scholar 

  22. N. V. Kir’yanov, E. D. Grigoryan, G. G. Sikharulidze, et al., “Study of Gas Extraction Processes from High-Temperature Superconducting Y-Ba-Cu-O Ceramics upon Vacuum Heat Treatment,” Sverkhprovodimost’: Fiz., Khim., Tekh. 3(6), 1121–1127 (1990).

    Google Scholar 

  23. H. Nishihara, N. Nishida, T. Takabatake, et al., “Proton NMR in Degraded Powder of YBa2Cu3O7 − δ,” Jpn. J. Appl. Phys. 27, 1652–1657 (1988).

    Article  CAS  ADS  Google Scholar 

  24. A. V. Dooglan, A. V. Egorov, I. R. Makhamedshin, et al., “Antiferromagnetic Properties of a Water-Vapor-Inserted YBa2Cu3O6.5 Compound Studied by NMR, NQR and μSR,” Phys. Rev. B: Condens. Matter Mater. Phys. 70, 054506 (2004).

    ADS  Google Scholar 

  25. J. G. Thompson, B. G. Hyde, R. L. Withers, et al., “Atmospheric Degradation of the High-Temperature Superconductor, YBa2Cu3O7 − δ,” Mater. Res. Bull. 22, 1715–1724 (1987).

    Article  CAS  Google Scholar 

  26. Rupeng Zhao, M. J. Goringe, S. Myhra, and P. S. Turner, “Transmission Microscopy and High-Resolution Transmission Electron Microscopy Studies of the Early Stages in the Degradation of YBa2Cu3O7 − δ) Superconductor in Water Vapor,” Philos. Mag. A 66(4), 491–506 (1992).

    Article  CAS  ADS  Google Scholar 

  27. H. W. Zandbergen, “ABa2Cu3O8 and ABa2Cu3O10 Formed by Intercalation in ABa2Cu3O7 at 20 C in Air,” Physica C 193, 371–384 (1992).

    Article  CAS  ADS  Google Scholar 

  28. O. Wada, T. Odaka, V. Wakata, et al., “Transmission Electron Microscopy Study of the Environmental Degradation in Ba2YCu3O7 − y ,” J. Appl. Phys. 68, 5283 (1990).

    Article  CAS  ADS  Google Scholar 

  29. R. L. Kurtz, R. Stockbauer, T. Madey, et al., “Initial Stages of Degradation of Superconductor Surfaces: O2, H2O, CO2, and CO Chemisorption on La2 − x SrxCuO4,” Phys. Rev. B: Condens. Matter 37, 7936–7939 (1988).

    CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.V. Sudareva, M.V. Kuznetsov, E.I. Kuznetsova, Yu.V. Blinova, E.P. Romanov, I.B. Bobylev, 2009, published in Fizika Metallov i Metallovedenie, 2009, Vol. 108, No. 6, pp. 602–612.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sudareva, S.V., Kuznetsov, M.V., Kuznetsova, E.I. et al. Nature of heavy-atom disordering in the YBa2Cu3O6.8 (1.5 at % Ce) single crystal: X-ray photoelectron spectroscopy. Phys. Metals Metallogr. 108, 569–578 (2009). https://doi.org/10.1134/S0031918X09120072

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X09120072

Key words

Navigation