Skip to main content
Log in

Induced magnetic anisotropy and the structure of nanocrystalline Fe-Co-Cu-Nb-Si-B alloys with different content of Co: II structure of alloys with an induced magnetic anisotropy

  • Electrical and Magnetic Properties
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

A connection has been established between the structural state (phase composition) of the nanocrystalline alloys Fe73.5 − x Co x Cu1Nb3Si13.5B9 (x = 0, 10, 20, 30) and the type of the induced magnetic anisotropy (IMA), which is formed in the process of thermomechanical treatment (TMechT), on the one hand, and its thermal stability, on the other hand. It is shown that the addition of cobalt entails a decrease in the quantity of Fe-Si grains and the formation of phases that contain Fe-Co-B. The induced magnetic anisotropy depends on the volume fractions of structural components, their elastic properties, and coherent bonding of their crystal lattices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. V. Dmitrieva, V. A. Lukshina, E. G. Volkova, et al., “Induced Magnetic Anisotropy and Structure of Nanocrystalline Fe-Co-Cu-Nb-Si-B Alloys with Different Content of Co: I. Sress-Annealing Induced Magnetic Anisotropy and Its Thermal Stability,” Fiz. Met. Metalloved. 107(4), 376–382 (2009) [Phys. Met. Metallogr. 107 (4), 352–358 (2009)].

    CAS  Google Scholar 

  2. A. A. Glazer, N. M. Kleinerman, V. A. Lukshina, et al., “Thermomechanical Treatment of Nanocrystalline Fe73.5Cu1Nb3Si13.5B9 Alloy,” Fiz. Met. Metalloved., No. 12, 56–61 (1991).

  3. G. Herzer, “Creep Induced Magnetic Anisotropy in Nanocrystalline Fe-Cu-Nb-Si-B Alloys,” IEEE Trans. Magn. 30(6), 4800–4802 (1994).

    Article  ADS  CAS  Google Scholar 

  4. B. Hofmann and H. Kronmüller, “Stress-Induced Magnetic Anisotropy in Nanocrystalline FeCuNbSiB Alloy,” J. Magn. Magn. Mater. 152, 91–98 (1996).

    Article  ADS  CAS  Google Scholar 

  5. M. Ohnuma, K. Hono, T. Yanai, et al., “Direct Evidence for Structural Origin of Stress-Induced Magnetic Anisotropy in Fe-Si-B-Nb-Cu Nanocrystalline Alloys,” Appl. Phys. Lett. 83(14), 2859–2861 (2003).

    Article  ADS  CAS  Google Scholar 

  6. M. Ohnuma, K. Hono, T. Yanai, et al., “Origin of the Magnetic Anisotropy Induced by Stress Annealing in Fe-Based Nanocrystalline Alloy,” Appl. Phys. Lett. 86, 152513 (2005).

    Google Scholar 

  7. N. M. Kleinerman, V. V. Serikov, V. A. Lukshina, et al., “Induced Magnetic Anisotropy and the Structure of an FeCuNbB Nanocrystalline Alloy,” Fiz. Met. Metalloved. 98(4), 44–55 (2004) [Phys. Met. Metallogr. 98 (4), 377–388 (2004)].

    CAS  Google Scholar 

  8. V. V. Serikov, N. M. Kleinerman, E. G. Volkova, et al., “Structure and Magnetic Properties of Nanocrystalline FeCuNbSiB Alloys after a Thermomechanical Treatment,” Fiz. Met. Metalloved. 102(3), 290–295 (2006) [Phys. Met. Metallogr. 102 (3), 268–273 (2006)].

    CAS  Google Scholar 

  9. M. Ohnuma, D. H. Ping, T. Abe, et al., “Optimization of the Microstructure and Properties of Co-Substituted Fe-Si-B-Nb-Cu Nanocrystalline Soft Magnetic Alloys,” J. Appl. Phys. 93(11), 9186–9194 (2003).

    Article  ADS  CAS  Google Scholar 

  10. G. Pavlik, P. Sovak, M. Konc, et al., “Magnetostriction and Other Properties of (Fe1 − x Cox)73.5Cu1Nb3Si13.5B9 Alloys,” J. Magn. Magn. Mater. 304(2), e681–e683 (2006).

    Article  ADS  CAS  Google Scholar 

  11. N. I. Noskova, V. V. Shulika, and A. P. Potapov, “Magnetic Properties and Microstructure of Nanocrystalline Soft Magnetic Fe73.5 − x CoxCu1Nb3Si13.5B9 Alloys,” Fiz. Met. Metalloved. 102(5), 539–544 (2006) [Phys. Met. Metallogr. 102 (5), 506–511 (2006)].

    CAS  Google Scholar 

  12. A. Kolano-Burian, T. Kulik, G. Vlasak, et al., “Effect of Co Addition on Nanocrystallization and Soft Magnetic Properties of (Fe1 − x Cox)73.5Cu1Nb3Si13.5B9 Alloys,” J. Magn. Magn. Mater. 272–276(2), 1447–1448 (2004).

    Article  Google Scholar 

  13. V. S. Rusakov, Mössbauer Spectroscopy of Locally Inhomogeneous Systems (Inst. Yadern. Fiz., Nat. Yadern. Tsentr Resp. Kazakhstan, Almaty, 2000).

    Google Scholar 

  14. K. Woong, K. Choo and Roy Kaplow “The Distinctness of Magnetic Hyperfine Fields Associated with Structurally Unique Iron Sites in Fe3B,” Metall. Trans. A 8(3), 417–319 (1977).

    Article  Google Scholar 

  15. V. A. Barinov, V. A. Tsurin, V. I. Voronin, et al., “Mössbauer Investigations of the Metastable Fe23B6 Phase,” Fiz. Met. Metalloved. 101(5), 496–507 (2006) [Phys. Met. Metallogr. 101 (5), 456–466 (2006)].

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © N.M. Kleinerman, V.V. Serikov, V.A. Lukshina, E.G. Volkova, N.V. Dmitrieva, A.P. Potapov, 2009, published in Fizika Metallov i Metallovedenie, 2009, Vol. 107, No. 5, pp. 482–489.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kleinerman, N.M., Serikov, V.V., Lukshina, V.A. et al. Induced magnetic anisotropy and the structure of nanocrystalline Fe-Co-Cu-Nb-Si-B alloys with different content of Co: II structure of alloys with an induced magnetic anisotropy. Phys. Metals Metallogr. 107, 449–456 (2009). https://doi.org/10.1134/S0031918X09050056

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X09050056

PACS numbers

Navigation